Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
16
pubmed:dateCreated
2007-8-2
pubmed:abstractText
Breast density (the percentage of fibroglandular tissue in the breast) has been suggested to be a useful surrogate marker for breast cancer risk. It is conventionally measured using screen-film mammographic images by a labor-intensive histogram segmentation method (HSM). We have adapted and modified the HSM for measuring breast density from raw digital mammograms acquired by full-field digital mammography. Multiple regression model analyses showed that many of the instrument parameters for acquiring the screening mammograms (e.g. breast compression thickness, radiological thickness, radiation dose, compression force, etc) and image pixel intensity statistics of the imaged breasts were strong predictors of the observed threshold values (model R(2) = 0.93) and %-density (R(2) = 0.84). The intra-class correlation coefficient of the %-density for duplicate images was estimated to be 0.80, using the regression model-derived threshold values, and 0.94 if estimated directly from the parameter estimates of the %-density prediction regression model. Therefore, with additional research, these mathematical models could be used to compute breast density objectively, automatically bypassing the HSM step, and could greatly facilitate breast cancer research studies.
pubmed:grant
http://linkedlifedata.com/resource/pubmed/grant/CA 65628, http://linkedlifedata.com/resource/pubmed/grant/CA 95545, http://linkedlifedata.com/resource/pubmed/grant/M01 RR 00073, http://linkedlifedata.com/resource/pubmed/grant/M01 RR000073-41S10523, http://linkedlifedata.com/resource/pubmed/grant/M01 RR000073-42A10523, http://linkedlifedata.com/resource/pubmed/grant/M01 RR000073-42A10585, http://linkedlifedata.com/resource/pubmed/grant/M01 RR000073-438695, http://linkedlifedata.com/resource/pubmed/grant/M01 RR000073-438724, http://linkedlifedata.com/resource/pubmed/grant/M01 RR000073-447284, http://linkedlifedata.com/resource/pubmed/grant/M01 RR000073-447306, http://linkedlifedata.com/resource/pubmed/grant/M01 RR000073-455383, http://linkedlifedata.com/resource/pubmed/grant/M01 RR000073-455393, http://linkedlifedata.com/resource/pubmed/grant/R01 CA065628-03, http://linkedlifedata.com/resource/pubmed/grant/R01 CA095545-01A1, http://linkedlifedata.com/resource/pubmed/grant/R01 CA095545-01A1S1, http://linkedlifedata.com/resource/pubmed/grant/R01 CA095545-02, http://linkedlifedata.com/resource/pubmed/grant/R01 CA095545-03, http://linkedlifedata.com/resource/pubmed/grant/R01 CA095545-04, http://linkedlifedata.com/resource/pubmed/grant/R01 CA095545-05, http://linkedlifedata.com/resource/pubmed/grant/R01 CA095545-05S1, http://linkedlifedata.com/resource/pubmed/grant/R01 CA095545-06
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-10628960, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-10757607, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-11190946, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-11249089, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-11439475, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-11513030, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-11887946, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-12201434, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-1260729, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-15487727, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-15933139, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-1732936, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-179369, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-3315715, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-3495132, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-7563205, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-7752271, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-8405204, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-8547541, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-8735257, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-9097055, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-9210710, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-9509532, http://linkedlifedata.com/resource/pubmed/commentcorrection/17671343-9718504
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Aug
pubmed:issn
0031-9155
pubmed:author
pubmed:issnType
Print
pubmed:day
21
pubmed:volume
52
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
4905-21
pubmed:dateRevised
2011-9-26
pubmed:meshHeading
pubmed:year
2007
pubmed:articleTitle
Computing mammographic density from a multiple regression model constructed with image-acquisition parameters from a full-field digital mammographic unit.
pubmed:affiliation
Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX 77555-1109, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Evaluation Studies, Research Support, N.I.H., Extramural