Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
19
pubmed:dateCreated
2007-9-17
pubmed:databankReference
pubmed:abstractText
The moderately halophilic bacterium Halobacillus halophilus copes with the salinity in its environment by the production of compatible solutes. At intermediate salinities of around 1 M NaCl, cells produce glutamate and glutamine in a chloride-dependent manner (S. H. Saum, J. F. Sydow, P. Palm, F. Pfeiffer, D. Oesterhelt, and V. Müller, J. Bacteriol. 188:6808-6815, 2006). Here, we report that H. halophilus switches its osmolyte strategy and produces proline as the dominant solute at higher salinities (2 to 3 M NaCl). The proline biosynthesis genes proH, proJ, and proA were identified. They form a transcriptional unit and encode the pyrroline-5-carboxylate reductase, the glutamate-5-kinase, and the glutamate-5-semialdehyde dehydrogenase, respectively, catalyzing proline biosynthesis from glutamate. Expression of the genes was clearly salinity dependent and reached a maximum at 2.5 M NaCl, indicating that the pro operon is involved in salinity-induced proline biosynthesis. To address the role of anions in the process of pro gene activation and proline biosynthesis, we used a cell suspension system. Chloride salts lead to the highest accumulation of proline. Interestingly, chloride could be substituted to a large extent by glutamate salts. This unexpected finding was further analyzed on the transcriptional level. The cellular mRNA levels of all three pro genes were increased up to 90-fold in the presence of glutamate. A titration revealed that a minimal concentration of 0.2 M glutamate already stimulated pro gene expression. These data demonstrate that the solute glutamate is involved in the switch of osmolyte strategy from glutamate to proline as the dominant compatible solute during the transition from moderate to high salinity.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-1008746, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-10473374, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-11165235, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-11418582, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-11846609, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-11846768, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-11931160, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-12399491, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-12486458, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-12844489, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-14532061, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-15099515, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-16176595, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-16348295, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-16541105, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-16980483, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-17565428, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-2127801, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-2127802, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-2321951, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-3060036, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-4995906, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-7622480, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-9384377, http://linkedlifedata.com/resource/pubmed/commentcorrection/17660292-9618450
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Oct
pubmed:issn
0021-9193
pubmed:author
pubmed:issnType
Print
pubmed:volume
189
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
6968-75
pubmed:dateRevised
2010-9-15
pubmed:meshHeading
pubmed-meshheading:17660292-Anions, pubmed-meshheading:17660292-Bacillaceae, pubmed-meshheading:17660292-Dose-Response Relationship, Drug, pubmed-meshheading:17660292-Gene Expression Regulation, Bacterial, pubmed-meshheading:17660292-Glutamate-5-Semialdehyde Dehydrogenase, pubmed-meshheading:17660292-Glutamic Acid, pubmed-meshheading:17660292-Glutamine, pubmed-meshheading:17660292-Molecular Sequence Data, pubmed-meshheading:17660292-Operon, pubmed-meshheading:17660292-Phosphotransferases (Carboxyl Group Acceptor), pubmed-meshheading:17660292-Polymerase Chain Reaction, pubmed-meshheading:17660292-Proline, pubmed-meshheading:17660292-Pyrroline Carboxylate Reductases, pubmed-meshheading:17660292-Sequence Analysis, DNA, pubmed-meshheading:17660292-Sodium Chloride, pubmed-meshheading:17660292-Transcription, Genetic, pubmed-meshheading:17660292-Transcriptional Activation
pubmed:year
2007
pubmed:articleTitle
Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus.
pubmed:affiliation
Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't