Source:http://linkedlifedata.com/resource/pubmed/id/17633723
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:dateCreated |
2007-7-18
|
pubmed:abstractText |
Inferring the position of functionally active regions from a multi-subject fMRI dataset involves the comparison of the individual data and the inference of a common activity model. While voxel-based analyzes, e.g. Random Effect statistics, are widely used, they do not model each individual activation pattern. Here, we develop a new procedure that extracts structures individually and compares them at the group level. For inference about spatial locations of interest, a Dirichlet Process Mixture Model is used. Finally, inter-subject correspondences are computed with Bayesian Network models. We show the power of the technique on both simulated and real datasets and compare it with standard inference techniques.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:issn |
1011-2499
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
20
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
482-94
|
pubmed:meshHeading |
pubmed-meshheading:17633723-Algorithms,
pubmed-meshheading:17633723-Brain,
pubmed-meshheading:17633723-Brain Mapping,
pubmed-meshheading:17633723-Computer Simulation,
pubmed-meshheading:17633723-Evoked Potentials,
pubmed-meshheading:17633723-Humans,
pubmed-meshheading:17633723-Image Interpretation, Computer-Assisted,
pubmed-meshheading:17633723-Magnetic Resonance Imaging,
pubmed-meshheading:17633723-Models, Neurological
|
pubmed:year |
2007
|
pubmed:articleTitle |
High level group analysis of FMRI data based on Dirichlet process mixture models.
|
pubmed:affiliation |
INRIA Futurs, Neurospin, Gif-sur-Yvette cedex, France. bertrand.thirion@inria.fr
|
pubmed:publicationType |
Journal Article,
Evaluation Studies
|