Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
15
pubmed:dateCreated
2007-10-1
pubmed:abstractText
Molecular dynamics and other molecular simulation methods rely on a potential energy function, based only on the relative coordinates of the atomic nuclei. Such a function, called a force field, approximately represents the electronic structure interactions of a condensed matter system. Developing such approximate functions and fitting their parameters remains an arduous, time-consuming process, relying on expert physical intuition. To address this problem, a functional programming methodology was developed that may enable automated discovery of entirely new force-field functional forms, while simultaneously fitting parameter values. The method uses a combination of genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering, to efficiently search a large space of candidate functional forms and parameters. The methodology was tested using a nontrivial problem with a well-defined globally optimal solution: a small set of atomic configurations was generated and the energy of each configuration was calculated using the Lennard-Jones pair potential. Starting with a population of random functions, our fully automated, massively parallel implementation of the method reproducibly discovered the original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling only a minuscule portion of the total search space. This result indicates that, with further improvement, the method may be suitable for unsupervised development of more accurate force fields with completely new functional forms.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Nov
pubmed:issn
0192-8651
pubmed:author
pubmed:copyrightInfo
Copyright (c) 2007 Wiley Periodicals, Inc.
pubmed:issnType
Print
pubmed:day
30
pubmed:volume
28
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
2465-71
pubmed:meshHeading
pubmed:year
2007
pubmed:articleTitle
Searching for globally optimal functional forms for interatomic potentials using genetic programming with parallel tempering.
pubmed:affiliation
Multiscale Dynamic Materials Modeling Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't