Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
Web Server issue
pubmed:dateCreated
2007-7-16
pubmed:abstractText
To distinguish the real pre-miRNAs from other hairpin sequences with similar stem-loops (pseudo pre-miRNAs), a hybrid feature which consists of local contiguous structure-sequence composition, minimum of free energy (MFE) of the secondary structure and P-value of randomization test is used. Besides, a novel machine-learning algorithm, random forest (RF), is introduced. The results suggest that our method predicts at 98.21% specificity and 95.09% sensitivity. When compared with the previous study, Triplet-SVM-classifier, our RF method was nearly 10% greater in total accuracy. Further analysis indicated that the improvement was due to both the combined features and the RF algorithm. The MiPred web server is available at http://www.bioinf.seu.edu.cn/miRNA/. Given a sequence, MiPred decides whether it is a pre-miRNA-like hairpin sequence or not. If the sequence is a pre-miRNA-like hairpin, the RF classifier will predict whether it is a real pre-miRNA or a pseudo one.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-10572183, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-1180967, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-12624257, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-12672692, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-12824340, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-12844358, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-14508493, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-14559182, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-14632445, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-14681370, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-14744438, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-15066187, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-15200956, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-15217813, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-15272084, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-15701730, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-15965474, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-15987789, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-15994192, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-16274478, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-16381612, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-16543277, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-16628248, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-16845048, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-16873472, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-17105718, http://linkedlifedata.com/resource/pubmed/commentcorrection/17553836-17127242
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
1362-4962
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
35
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
W339-44
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
2007
pubmed:articleTitle
MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features.
pubmed:affiliation
State Key Laboratory of Bioelectronics, Department of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't