Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17485274rdf:typepubmed:Citationlld:pubmed
pubmed-article:17485274lifeskim:mentionsumls-concept:C0237401lld:lifeskim
pubmed-article:17485274lifeskim:mentionsumls-concept:C0040715lld:lifeskim
pubmed-article:17485274lifeskim:mentionsumls-concept:C1881977lld:lifeskim
pubmed-article:17485274lifeskim:mentionsumls-concept:C0012935lld:lifeskim
pubmed-article:17485274lifeskim:mentionsumls-concept:C1522702lld:lifeskim
pubmed-article:17485274lifeskim:mentionsumls-concept:C0599718lld:lifeskim
pubmed-article:17485274lifeskim:mentionsumls-concept:C0599813lld:lifeskim
pubmed-article:17485274lifeskim:mentionsumls-concept:C0599893lld:lifeskim
pubmed-article:17485274lifeskim:mentionsumls-concept:C0600596lld:lifeskim
pubmed-article:17485274lifeskim:mentionsumls-concept:C1537022lld:lifeskim
pubmed-article:17485274pubmed:dateCreated2007-5-8lld:pubmed
pubmed-article:17485274pubmed:abstractTextFabricated solid-state nanopore chips are used to probe individual single stranded DNA (ssDNA) homopolymers. Based on the analysis of the current blockage caused by DNA translocation through a voltage-biased nanopore, we discovered that the hydrodynamic diameter of ssDNA homopolymer helix is comparable to that of double stranded DNA (dsDNA) helix. This proof-of-principle demonstration shows that solid-state nanopore technology can be used to spy on secondary structures of biopolymers. We also show that ssDNA manifests slower and distinct translocation kinetics in comparison to dsDNA. Furthermore, the present study helps to refine our understanding of the ssDNA translocation kinetics through narrower alpha-hemolysin protein pores.lld:pubmed
pubmed-article:17485274pubmed:languageenglld:pubmed
pubmed-article:17485274pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17485274pubmed:citationSubsetIMlld:pubmed
pubmed-article:17485274pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17485274pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17485274pubmed:statusMEDLINElld:pubmed
pubmed-article:17485274pubmed:issn1093-4715lld:pubmed
pubmed-article:17485274pubmed:authorpubmed-author:ChenPengPlld:pubmed
pubmed-article:17485274pubmed:authorpubmed-author:WangQiaoQlld:pubmed
pubmed-article:17485274pubmed:authorpubmed-author:KimYoung-RokY...lld:pubmed
pubmed-article:17485274pubmed:authorpubmed-author:LiChang...lld:pubmed
pubmed-article:17485274pubmed:issnTypeElectroniclld:pubmed
pubmed-article:17485274pubmed:volume12lld:pubmed
pubmed-article:17485274pubmed:ownerNLMlld:pubmed
pubmed-article:17485274pubmed:authorsCompleteYlld:pubmed
pubmed-article:17485274pubmed:pagination2978-83lld:pubmed
pubmed-article:17485274pubmed:meshHeadingpubmed-meshheading:17485274...lld:pubmed
pubmed-article:17485274pubmed:meshHeadingpubmed-meshheading:17485274...lld:pubmed
pubmed-article:17485274pubmed:meshHeadingpubmed-meshheading:17485274...lld:pubmed
pubmed-article:17485274pubmed:year2007lld:pubmed
pubmed-article:17485274pubmed:articleTitleDetecting translocation of individual single stranded DNA homopolymers through a fabricated nanopore chip.lld:pubmed
pubmed-article:17485274pubmed:affiliationSamsung Advanced Institute of Technology, South Korea.lld:pubmed
pubmed-article:17485274pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17485274pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17485274lld:pubmed