Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
4
pubmed:dateCreated
2007-4-3
pubmed:abstractText
Genome-scale metabolic models promise important insights into cell function. However, the definition of pathways and functional network modules within these models, and in the biochemical literature in general, is often based on intuitive reasoning. Although mathematical methods have been proposed to identify modules, which are defined as groups of reactions with correlated fluxes, there is a need for experimental verification. We show here that multivariate statistical analysis of the NMR-derived intra- and extracellular metabolite profiles of single-gene deletion mutants in specific metabolic pathways in the yeast Saccharomyces cerevisiae identified outliers whose profiles were markedly different from those of the other mutants in their respective pathways. Application of flux coupling analysis to a metabolic model of this yeast showed that the deleted gene in an outlying mutant encoded an enzyme that was not part of the same functional network module as the other enzymes in the pathway. We suggest that metabolomic methods such as this, which do not require any knowledge of how a gene deletion might perturb the metabolic network, provide an empirical method for validating and ultimately refining the predicted network structure.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-10436161, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-11135551, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-12140549, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-12351653, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-12399584, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-12566402, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-12590120, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-12740584, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-14517252, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-14578455, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-14718379, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-15136733, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-1514678, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-15197165, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-15268771, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-15466562, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-15494745, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-15544950, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-15667247, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-15710883, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-15953932, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-15961036, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-16204195, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-16311593, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-2965996, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-387738, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-7992502, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-8119301, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-8121398, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-9278401, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-9392079, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-9509575, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-9612078, http://linkedlifedata.com/resource/pubmed/commentcorrection/17339370-9744112
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Apr
pubmed:issn
1088-9051
pubmed:author
pubmed:issnType
Print
pubmed:volume
17
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
510-9
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
2007
pubmed:articleTitle
Evaluation of predicted network modules in yeast metabolism using NMR-based metabolite profiling.
pubmed:affiliation
Department of Biochemistry, University of Cambridge, Cambridge, UK.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Evaluation Studies