pubmed:abstractText |
We present a Bayesian hierarchical model and Gibbs Sampling implementation that integrates gene expression, ChIP binding, and transcription factor motif data in a principled and robust fashion. COGRIM was applied to both unicellular and mammalian organisms under different scenarios of available data. In these applications, we demonstrate the ability to predict gene-transcription factor interactions with reduced numbers of false-positive findings and to make predictions beyond what is obtained when single types of data are considered.
|