Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
5805
pubmed:dateCreated
2006-12-12
pubmed:databankReference
pubmed:abstractText
Global transcription machinery engineering (gTME) is an approach for reprogramming gene transcription to elicit cellular phenotypes important for technological applications. Here we show the application of gTME to Saccharomyces cerevisiae for improved glucose/ethanol tolerance, a key trait for many biofuels programs. Mutagenesis of the transcription factor Spt15p and selection led to dominant mutations that conferred increased tolerance and more efficient glucose conversion to ethanol. The desired phenotype results from the combined effect of three separate mutations in the SPT15 gene [serine substituted for phenylalanine (Phe(177)Ser) and, similarly, Tyr(195)His, and Lys(218)Arg]. Thus, gTME can provide a route to complex phenotypes that are not readily accessible by traditional methods.
pubmed:grant
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
http://linkedlifedata.com/resource/pubmed/chemical/Cell Cycle Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Ethanol, http://linkedlifedata.com/resource/pubmed/chemical/Glucose, http://linkedlifedata.com/resource/pubmed/chemical/SPT15 protein, S cerevisiae, http://linkedlifedata.com/resource/pubmed/chemical/SPT3 protein, S cerevisiae, http://linkedlifedata.com/resource/pubmed/chemical/Saccharomyces cerevisiae Proteins, http://linkedlifedata.com/resource/pubmed/chemical/TAF10 protein, S cerevisiae, http://linkedlifedata.com/resource/pubmed/chemical/TATA-Binding Protein Associated..., http://linkedlifedata.com/resource/pubmed/chemical/TATA-Box Binding Protein, http://linkedlifedata.com/resource/pubmed/chemical/Transcription Factor TFIID, http://linkedlifedata.com/resource/pubmed/chemical/Transcription Factors
pubmed:status
MEDLINE
pubmed:month
Dec
pubmed:issn
1095-9203
pubmed:author
pubmed:issnType
Electronic
pubmed:day
8
pubmed:volume
314
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
1565-8
pubmed:dateRevised
2007-11-14
pubmed:meshHeading
pubmed-meshheading:17158319-Amino Acid Substitution, pubmed-meshheading:17158319-Cell Cycle Proteins, pubmed-meshheading:17158319-Ethanol, pubmed-meshheading:17158319-Fermentation, pubmed-meshheading:17158319-Gene Expression Profiling, pubmed-meshheading:17158319-Gene Expression Regulation, Fungal, pubmed-meshheading:17158319-Genetic Engineering, pubmed-meshheading:17158319-Glucose, pubmed-meshheading:17158319-Mutagenesis, pubmed-meshheading:17158319-Phenotype, pubmed-meshheading:17158319-Saccharomyces cerevisiae, pubmed-meshheading:17158319-Saccharomyces cerevisiae Proteins, pubmed-meshheading:17158319-TATA-Binding Protein Associated Factors, pubmed-meshheading:17158319-TATA-Box Binding Protein, pubmed-meshheading:17158319-Transcription, Genetic, pubmed-meshheading:17158319-Transcription Factor TFIID, pubmed-meshheading:17158319-Transcription Factors, pubmed-meshheading:17158319-Transformation, Genetic, pubmed-meshheading:17158319-Up-Regulation
pubmed:year
2006
pubmed:articleTitle
Engineering yeast transcription machinery for improved ethanol tolerance and production.
pubmed:affiliation
Department of Chemical Engineering, Massachusetts Institute of Technology, Room 56-469, Cambridge, MA 02139, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural