Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:dateCreated
2006-10-19
pubmed:abstractText
Simultaneously testing a collection of null hypotheses about a data generating distribution based on a sample of independent and identically distributed observations is a fundamental and important statistical problem involving many applications. Methods based on marginal null distributions (i.e., marginal p-values) are attractive since the marginal p-values can be based on a user supplied choice of marginal null distributions and they are computationally trivial, but they, by necessity, are known to either be conservative or to rely on assumptions about the dependence structure between the test-statistics. Re-sampling based multiple testing (Westfall and Young, 1993) involves sampling from a joint null distribution of the test-statistics, and controlling (possibly in a, for example, step-down fashion) the user supplied type-I error rate under this joint null distribution for the test-statistics. A generally asymptotically valid null distribution avoiding the need for the subset pivotality condition for the vector of test-statistics was proposed in Pollard, van der Laan (2003) for null hypotheses about general real valued parameters. This null distribution was generalized in Dudoit, vanderLaan, Pollard (2004) to general null hypotheses and test-statistics. In ongoing recent work van der Laan, Hubbard (2005), we propose a new generally asymptotically valid null distribution for the test-statistics and a corresponding bootstrap estimate, whose marginal distributions are user supplied, and can thus be set equal to the (most powerful) marginal null distributions one would use in univariate testing to obtain a p-value. Previous proposed null distributions either relied on a restrictive subset pivotality condition (Westfall and Young) or did not guarantee this latter property (Dudoit, vanderLaan, Pollard, 2004). It is argued and illustrated that the resulting new re-sampling based multiple testing methods provide more accurate control of the wished Type-I error in finite samples and are more powerful. We establish formal results and investigate the practical performance of this methodology in a simulation and data analysis.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:issn
1544-6115
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
5
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
Article14
pubmed:dateRevised
2006-12-4
pubmed:meshHeading
pubmed:year
2006
pubmed:articleTitle
Quantile-function based null distribution in resampling based multiple testing.
pubmed:affiliation
Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA. laan@stat.berkeley.edu
pubmed:publicationType
Journal Article, Comparative Study