Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
3
pubmed:dateCreated
2006-5-22
pubmed:abstractText
Quantitative structure-activity (property) relationship (QSAR/QSPR) models are typically generated with a single modeling technique using one type of molecular descriptors. Recently, we have begun to explore a combinatorial QSAR approach which employs various combinations of optimization methods and descriptor types and includes rigorous and consistent model validation (Kovatcheva, A.; Golbraikh, A.; Oloff, S.; Xiao, Y.; Zheng, W.; Wolschann, P.; Buchbauer, G.; Tropsha, A. Combinatorial QSAR of Ambergris Fragrance Compounds. J. Chem. Inf. Comput. Sci. 2004, 44, 582-95). Herein, we have applied this approach to a data set of 195 diverse substrates and nonsubstrates of P-glycoprotein (P-gp) that plays a crucial role in drug resistance. Modeling methods included k-nearest neighbors classification, decision tree, binary QSAR, and support vector machines (SVM). Descriptor sets included molecular connectivity indices, atom pair (AP) descriptors, VolSurf descriptors, and molecular operation environment descriptors. Each descriptor type was used with every QSAR modeling technique; so, in total, 16 combinations of techniques and descriptor types have been considered. Although all combinations resulted in models with a high correct classification rate for the training set (CCR(train)), not all of them had high classification accuracy for the test set (CCR(test)). Thus, predictive models have been generated only for some combinations of the methods and descriptor types, and the best models were obtained using SVM classification with either AP or VolSurf descriptors; they were characterized by CCR(train) = 0.94 and 0.88 and CCR(test) = 0.81 and 0.81, respectively. The combinatorial QSAR approach identified models with higher predictive accuracy than those reported previously for the same data set. We suggest that, in the absence of any universally applicable "one-for-all" QSAR methodology, the combinatorial QSAR approach should become the standard practice in QSPR/QSAR modeling.
pubmed:grant
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:issn
1549-9596
pubmed:author
pubmed:issnType
Print
pubmed:volume
46
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
1245-54
pubmed:dateRevised
2007-11-14
pubmed:meshHeading
pubmed:articleTitle
Combinatorial QSAR modeling of P-glycoprotein substrates.
pubmed:affiliation
Division of Natural and Medicinal Chemistry, The Laboratory for Molecular Modeling, School of Pharmacy, CB# 7360, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7360, USA.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural, Validation Studies