Source:http://linkedlifedata.com/resource/pubmed/id/16683786
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
19
|
pubmed:dateCreated |
2006-5-10
|
pubmed:abstractText |
In striking contrast to simple polymer physics theory, which does not account for solvent effects, we find that physical confinement of solvated biopolymers decreases solvent entropy, which in turn leads to a reduction in the organized structural content of the polymer. Since our theory is based on a fundamental property of water-protein statistical mechanics, we expect it to have broad implications in many biological and material science contexts.
|
pubmed:grant | |
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:chemical | |
pubmed:status |
MEDLINE
|
pubmed:month |
May
|
pubmed:issn |
0002-7863
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:day |
17
|
pubmed:volume |
128
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
6316-7
|
pubmed:dateRevised |
2008-1-17
|
pubmed:meshHeading |
pubmed-meshheading:16683786-Entropy,
pubmed-meshheading:16683786-Models, Molecular,
pubmed-meshheading:16683786-Nanotubes, Carbon,
pubmed-meshheading:16683786-Protein Denaturation,
pubmed-meshheading:16683786-Protein Structure, Secondary,
pubmed-meshheading:16683786-Proteins,
pubmed-meshheading:16683786-Solvents
|
pubmed:year |
2006
|
pubmed:articleTitle |
Nanotube confinement denatures protein helices.
|
pubmed:affiliation |
Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, Non-P.H.S.,
Research Support, Non-U.S. Gov't,
Research Support, N.I.H., Extramural
|