pubmed-article:16668250 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:16668250 | lifeskim:mentions | umls-concept:C0697157 | lld:lifeskim |
pubmed-article:16668250 | lifeskim:mentions | umls-concept:C1095801 | lld:lifeskim |
pubmed-article:16668250 | lifeskim:mentions | umls-concept:C0205474 | lld:lifeskim |
pubmed-article:16668250 | lifeskim:mentions | umls-concept:C0682997 | lld:lifeskim |
pubmed-article:16668250 | lifeskim:mentions | umls-concept:C0596988 | lld:lifeskim |
pubmed-article:16668250 | lifeskim:mentions | umls-concept:C1880022 | lld:lifeskim |
pubmed-article:16668250 | lifeskim:mentions | umls-concept:C1550605 | lld:lifeskim |
pubmed-article:16668250 | lifeskim:mentions | umls-concept:C0456205 | lld:lifeskim |
pubmed-article:16668250 | pubmed:issue | 3 | lld:pubmed |
pubmed-article:16668250 | pubmed:dateCreated | 2010-6-29 | lld:pubmed |
pubmed-article:16668250 | pubmed:abstractText | A radiation-induced mutant of Scotch spearmint (Mentha x gracilis) was shown to produce an essential oil containing principally C3-oxygenated p-menthane monoterpenes that are typical of peppermint, instead of the C6-oxygenated monoterpene family characteristic of spearmint. In vitro measurement of all of the enzymes responsible for the production of both the C3-oxygenated and C6-oxygenated families of monoterpenes from the common precursor (-)-limonene indicated that a virtually identical complement of enzymes was present in wild type and mutant, with the exception of the microsomal, cytochrome P-450-dependent (-)-limonene hydroxylase; the C6-hydroxylase producing (-)-trans-carveol in the wild type had been replaced by a C3-hydroxylase producing (-)-trans-isopiperitenol in the mutant. Additionally, the mutant, but not the wild type, could carry out the cytochrome P-450-dependent epoxidation of the alpha,beta-unsaturated bond of the ketones formed via C3-hydroxylation. Although present in the wild type, the enzymes of the C3-pathway that convert trans-isopiperitenol to menthol isomers are synthetically inactive because of the absence of the key C3-oxygenated intermediate generated by hydroxylation of limonene. These results, which clarify the origins of the C3- and C6-oxygenation patterns, also allow correction of a number of earlier biogenetic proposals for the formation of monoterpenes in Mentha. | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:language | eng | lld:pubmed |
pubmed-article:16668250 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16668250 | pubmed:status | PubMed-not-MEDLINE | lld:pubmed |
pubmed-article:16668250 | pubmed:month | Jul | lld:pubmed |
pubmed-article:16668250 | pubmed:issn | 0032-0889 | lld:pubmed |
pubmed-article:16668250 | pubmed:author | pubmed-author:KarrDD | lld:pubmed |
pubmed-article:16668250 | pubmed:author | pubmed-author:CroteauRR | lld:pubmed |
pubmed-article:16668250 | pubmed:author | pubmed-author:SatterwhiteD... | lld:pubmed |
pubmed-article:16668250 | pubmed:author | pubmed-author:SkotlandC BCB | lld:pubmed |
pubmed-article:16668250 | pubmed:author | pubmed-author:WagschalK CKC | lld:pubmed |
pubmed-article:16668250 | pubmed:author | pubmed-author:HyattD CDC | lld:pubmed |
pubmed-article:16668250 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:16668250 | pubmed:volume | 96 | lld:pubmed |
pubmed-article:16668250 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:16668250 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:16668250 | pubmed:pagination | 744-52 | lld:pubmed |
pubmed-article:16668250 | pubmed:dateRevised | 2010-9-15 | lld:pubmed |
pubmed-article:16668250 | pubmed:year | 1991 | lld:pubmed |
pubmed-article:16668250 | pubmed:articleTitle | Biochemical characterization of a spearmint mutant that resembles peppermint in monoterpene content. | lld:pubmed |
pubmed-article:16668250 | pubmed:affiliation | Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340. | lld:pubmed |
pubmed-article:16668250 | pubmed:publicationType | Journal Article | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16668250 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16668250 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16668250 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16668250 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16668250 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16668250 | lld:pubmed |