Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:dateCreated
2006-4-3
pubmed:abstractText
Retinal photoreceptors are highly specialised cells, which detect light and are central to mammalian vision. Many retinal diseases occur as a result of inherited dysfunction of the rod and cone photoreceptor cells. Development and maintenance of photoreceptors requires appropriate regulation of the many genes specifically or highly expressed in these cells. Over the last decades, different experimental approaches have been developed to identify photoreceptor enriched genes. Recent progress in RNA analysis technology has generated large amounts of gene expression data relevant to retinal development. This paper assesses a machine learning methodology for supporting the identification of photoreceptor enriched genes based on expression data.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-10699188, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-10802659, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-11301299, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-11733058, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-12364383, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-12391299, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-12537556, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-12613259, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-12874019, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-15163632, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-15226823, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-15239836, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-2902634, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-7570003, http://linkedlifedata.com/resource/pubmed/commentcorrection/16524483-9834183
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:issn
1471-2105
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
7
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
116
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
2006
pubmed:articleTitle
Machine learning approaches to supporting the identification of photoreceptor-enriched genes based on expression data.
pubmed:affiliation
School of Computing and Mathematics, University of Ulster, UK. wang@ulster.ac.uk
pubmed:publicationType
Journal Article, Evaluation Studies