Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
52
pubmed:dateCreated
2005-12-28
pubmed:abstractText
A principal aim of systems biology is to develop in silico models of whole cells or cellular processes that explain and predict observable cellular phenotypes. Here, we use a model of a genome-scale reconstruction of the integrated metabolic and transcriptional regulatory networks for Escherichia coli, composed of 1,010 gene products, to assess the properties of all functional states computed in 15,580 different growth environments. The set of all functional states of the integrated network exhibits a discernable structure that can be visualized in 3-dimensional space, showing that the transcriptional regulatory network governing metabolism in E. coli responds primarily to the available electron acceptor and the presence of glucose as the carbon source. This result is consistent with recently published experimental data. The observation that a complex network composed of 1,010 genes is organized to achieve few dominant modes demonstrates the utility of the systems approach for consolidating large amounts of genome-scale molecular information about a genome and its regulation to elucidate an organism's preferred environments and functional capabilities.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-10099333, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-10356245, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-10805765, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-10890920, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-11001586, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-11175725, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-11708855, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-11872829, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-12399572, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-12432395, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-12432404, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-12788544, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-12952533, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-14506848, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-14572541, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-14711822, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-15129285, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-15190353, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-15355549, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-15448692, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-15494745, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-15520470, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-15592468, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-16204189, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-7986045, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-9157253, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-9547262, http://linkedlifedata.com/resource/pubmed/commentcorrection/16357206-9843981
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Dec
pubmed:issn
0027-8424
pubmed:author
pubmed:issnType
Print
pubmed:day
27
pubmed:volume
102
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
19103-8
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed-meshheading:16357206-Bacterial Proteins, pubmed-meshheading:16357206-Carbon, pubmed-meshheading:16357206-Cell Physiological Phenomena, pubmed-meshheading:16357206-Cluster Analysis, pubmed-meshheading:16357206-Computational Biology, pubmed-meshheading:16357206-Computer Simulation, pubmed-meshheading:16357206-Environment, pubmed-meshheading:16357206-Escherichia coli, pubmed-meshheading:16357206-Escherichia coli Proteins, pubmed-meshheading:16357206-Gene Expression Regulation, Bacterial, pubmed-meshheading:16357206-Genes, Bacterial, pubmed-meshheading:16357206-Genome, Bacterial, pubmed-meshheading:16357206-Models, Biological, pubmed-meshheading:16357206-Oligonucleotide Array Sequence Analysis, pubmed-meshheading:16357206-Phenotype, pubmed-meshheading:16357206-Protein Structure, Tertiary, pubmed-meshheading:16357206-Software, pubmed-meshheading:16357206-Systems Biology, pubmed-meshheading:16357206-Transcription, Genetic
pubmed:year
2005
pubmed:articleTitle
The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states.
pubmed:affiliation
Bioengineering Department, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA.
pubmed:publicationType
Journal Article, Research Support, N.I.H., Extramural