Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
23
pubmed:dateCreated
2005-11-23
pubmed:abstractText
Protein remote homology detection is a central problem in computational biology. Supervised learning algorithms based on support vector machines are currently one of the most effective methods for remote homology detection. The performance of these methods depends on how the protein sequences are modeled and on the method used to compute the kernel function between them.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Dec
pubmed:issn
1367-4803
pubmed:author
pubmed:issnType
Print
pubmed:day
1
pubmed:volume
21
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
4239-47
pubmed:dateRevised
2006-11-15
pubmed:meshHeading
pubmed-meshheading:16188929-Algorithms, pubmed-meshheading:16188929-Amino Acid Sequence, pubmed-meshheading:16188929-Artificial Intelligence, pubmed-meshheading:16188929-Automatic Data Processing, pubmed-meshheading:16188929-Cluster Analysis, pubmed-meshheading:16188929-Computational Biology, pubmed-meshheading:16188929-Computer Simulation, pubmed-meshheading:16188929-Computing Methodologies, pubmed-meshheading:16188929-Databases, Protein, pubmed-meshheading:16188929-Models, Statistical, pubmed-meshheading:16188929-Pattern Recognition, Automated, pubmed-meshheading:16188929-Protein Conformation, pubmed-meshheading:16188929-Protein Folding, pubmed-meshheading:16188929-Proteins, pubmed-meshheading:16188929-Sequence Alignment, pubmed-meshheading:16188929-Sequence Analysis, Protein, pubmed-meshheading:16188929-Software
pubmed:year
2005
pubmed:articleTitle
Profile-based direct kernels for remote homology detection and fold recognition.
pubmed:affiliation
Department of Computer Science and Engineering, University of Minnesota Minneapolis, MN 55455, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't