Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
4
pubmed:dateCreated
2005-9-15
pubmed:abstractText
Receiver operating characteristic (ROC) analysis is a useful evaluative method of diagnostic accuracy. A Bayesian hierarchical nonlinear regression model for ROC analysis was developed. A validation analysis of diagnostic accuracy was conducted using prospective multi-center clinical trial prostate cancer biopsy data collected from three participating centers. The gold standard was based on radical prostatectomy to determine local and advanced disease. To evaluate the diagnostic performance of PSA level at fixed levels of Gleason score, a normality transformation was applied to the outcome data. A hierarchical regression analysis incorporating the effects of cluster (clinical center) and cancer risk (low, intermediate, and high) was performed, and the area under the ROC curve (AUC) was estimated.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-10217055, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-10235151, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-10372587, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-10411025, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-10918970, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-10979115, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-11508750, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-11568945, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-12232754, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-12369084, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-3203132, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-3294553, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-7563532, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-8208963, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-8912302, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-8988214, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-9419705, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-9544511, http://linkedlifedata.com/resource/pubmed/commentcorrection/16161801-9612889
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
Aug
pubmed:issn
0323-3847
pubmed:author
pubmed:issnType
Print
pubmed:volume
47
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
417-27
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed-meshheading:16161801-Bayes Theorem, pubmed-meshheading:16161801-Cluster Analysis, pubmed-meshheading:16161801-Computer Simulation, pubmed-meshheading:16161801-Confidence Intervals, pubmed-meshheading:16161801-Data Interpretation, Statistical, pubmed-meshheading:16161801-Diagnosis, Computer-Assisted, pubmed-meshheading:16161801-Humans, pubmed-meshheading:16161801-Male, pubmed-meshheading:16161801-Models, Biological, pubmed-meshheading:16161801-Models, Statistical, pubmed-meshheading:16161801-Nonlinear Dynamics, pubmed-meshheading:16161801-Prostatic Neoplasms, pubmed-meshheading:16161801-ROC Curve, pubmed-meshheading:16161801-Regression Analysis, pubmed-meshheading:16161801-Reproducibility of Results, pubmed-meshheading:16161801-Research Design, pubmed-meshheading:16161801-Sensitivity and Specificity
pubmed:year
2005
pubmed:articleTitle
A Bayesian hierarchical non-linear regression model in receiver operating characteristic analysis of clustered continuous diagnostic data.
pubmed:affiliation
Department of Health Care Policy, Harvard Medical School, 180 Longwood Avenue, Boston, MA 02115, USA. zou@bwh.harvard.edu
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, P.H.S., Evaluation Studies, Research Support, N.I.H., Extramural