Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2005-8-2
pubmed:abstractText
Non-linear relations between multiple biochemical parameters are the basis for the diagnosis of many diseases. Traditional linear analytical methods are not reliable predictors. Novel nonlinear techniques are increasingly used to improve the diagnostic accuracy of automated data interpretation. This has been exemplified in particular for the classification and diagnostic prediction of cancers based on expression profiling data. Our objective was to predict the genotype from complex biochemical data by comparing the performance of experienced clinicians to traditional linear analysis, and to novel non-linear analytical methods.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-11518967, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-12930931, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-1309366, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-18267757, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-1964539, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-4815171, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-7475607, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-7564791, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-7588399, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-7629224, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-8136301, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-8154853, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-8531540, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-8968761, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-9207613, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-9385370, http://linkedlifedata.com/resource/pubmed/commentcorrection/16061837-9888552
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Aug
pubmed:issn
0804-4643
pubmed:author
pubmed:issnType
Print
pubmed:volume
153
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
301-5
pubmed:dateRevised
2010-9-20
pubmed:meshHeading
pubmed:year
2005
pubmed:articleTitle
Machine learning approaches for phenotype-genotype mapping: predicting heterozygous mutations in the CYP21B gene from steroid profiles.
pubmed:affiliation
International NRW Graduate School in Bioinformatics and Genome Research Center of Biotechnology (CeBiTec), Bielefeld University, Germany. klaus.prank@cebitec.uni-bielefeld.de
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't