Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2006-3-20
pubmed:abstractText
Currently, the best way to reduce the mortality of cancer is to detect and treat it in the earliest stages. Technological advances in genomics and proteomics have opened a new realm of methods for early detection that show potential to overcome the drawbacks of current strategies. In particular, pattern analysis of mass spectra of blood samples has attracted attention as an approach to early detection of cancer. Mass spectrometry provides rapid and precise measurements of the sizes and relative abundances of the proteins present in a complex biological/chemical mixture. This article presents a review of the development of clinical decision support systems using mass spectrometry from a machine learning perspective. The literature is reviewed in an explicit machine learning framework, the components of which are preprocessing, feature extraction, feature selection, classifier training, and evaluation.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Apr
pubmed:issn
1532-0480
pubmed:author
pubmed:issnType
Electronic
pubmed:volume
39
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
227-48
pubmed:dateRevised
2006-11-15
pubmed:meshHeading
pubmed:year
2006
pubmed:articleTitle
A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples.
pubmed:affiliation
Electrical and Computer Engineering Department, The University of Texas at Austin, USA.
pubmed:publicationType
Journal Article, Review