Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
1
pubmed:dateCreated
2005-4-19
pubmed:abstractText
We study anomalous heat conduction and anomalous diffusion in low-dimensional systems ranging from nonlinear lattices, single walled carbon nanotubes, to billiard gas channels. We find that in all discussed systems, the anomalous heat conductivity can be connected with the anomalous diffusion, namely, if energy diffusion is sigma(2)(t)=2Dt(alpha) (0<alpha< or =2), then the thermal conductivity can be expressed in terms of the system size L as kappa=cL(beta) with beta=2-2/alpha. This result predicts that a normal diffusion (alpha=1) implies a normal heat conduction obeying the Fourier law (beta=0), a superdiffusion (alpha>1) implies an anomalous heat conduction with a divergent thermal conductivity (beta>0), and more interestingly, a subdiffusion (alpha<1) implies an anomalous heat conduction with a convergent thermal conductivity (beta<0), consequently, the system is a thermal insulator in the thermodynamic limit. Existing numerical data support our theoretical prediction.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Mar
pubmed:issn
1054-1500
pubmed:author
pubmed:issnType
Print
pubmed:volume
15
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
15121
pubmed:dateRevised
2008-11-21
pubmed:meshHeading
pubmed:year
2005
pubmed:articleTitle
Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels.
pubmed:affiliation
Department of Physics, National University of Singapore, 117542 Singapore.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't