Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
5
pubmed:dateCreated
2005-4-14
pubmed:abstractText
Optimality principles of biological movement are conceptually appealing and straightforward to formulate. Testing them empirically, however, requires the solution to stochastic optimal control and estimation problems for reasonably realistic models of the motor task and the sensorimotor periphery. Recent studies have highlighted the importance of incorporating biologically plausible noise into such models. Here we extend the linear-quadratic-gaussian framework--currently the only framework where such problems can be solved efficiently--to include control-dependent, state-dependent, and internal noise. Under this extended noise model, we derive a coordinate-descent algorithm guaranteed to converge to a feedback control law and a nonadaptive linear estimator optimal with respect to each other. Numerical simulations indicate that convergence is exponential, local minima do not exist, and the restriction to nonadaptive linear estimators has negligible effects in the control problems of interest. The application of the algorithm is illustrated in the context of reaching movements. A Matlab implementation is available at www.cogsci.ucsd.edu/~todorov.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-11601721, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-12020444, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-12205173, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-2132855, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-2378066, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-2742921, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-3406245, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-4020415, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-504536, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-6051798, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-6838914, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-7851935, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-889959, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-9156196, http://linkedlifedata.com/resource/pubmed/commentcorrection/15829101-9723616
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:status
MEDLINE
pubmed:month
May
pubmed:issn
0899-7667
pubmed:author
pubmed:issnType
Print
pubmed:volume
17
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
1084-108
pubmed:dateRevised
2011-6-7
pubmed:meshHeading
pubmed:year
2005
pubmed:articleTitle
Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system.
pubmed:affiliation
Department of Cognitive Science, University of California San Diego, La Jolla CA 92093-0515, USA. todorov@cogsci.ucsd.edu
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, P.H.S., Research Support, N.I.H., Extramural