Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
23
pubmed:dateCreated
2005-6-6
pubmed:abstractText
The cholesterol biosynthetic pathway produces numerous signaling molecules. Oxysterols through liver X receptor (LXR) activation regulate cholesterol efflux, whereas the non-sterol mevalonate metabolite, geranylgeranyl pyrophosphate (GGPP), was recently demonstrated to inhibit ABCA1 expression directly, through antagonism of LXR and indirectly through enhanced RhoA geranylgeranylation. We used HMG-CoA reductase inhibitors (statins) to test the hypothesis that reduced synthesis of mevalonate metabolites would enhance cholesterol efflux and attenuate foam cell formation. Preincubation of THP-1 macrophages with atorvastatin, dose dependently (1-10 microm) stimulated cholesterol efflux to apolipoprotein AI (apoAI, 10-60%, p < 0.05) and high density lipoprotein (HDL(3)) (2-50%, p < 0.05), despite a significant decrease in cholesterol synthesis (2-90%). Atorvastatin also increased ABCA1 and ABCG1 mRNA abundance (30 and 35%, p < 0.05). Addition of mevalonate, GGPP or farnesyl pyrophosphate completely blocked the statin-induced increase in ABCA1 expression and apoAI-mediated cholesterol efflux. A role for RhoA was established, because two inhibitors of Rho protein activity, a geranylgeranyl transferase inhibitor and C3 exoenzyme, increased cholesterol efflux to apoAI (20-35%, p < 0.05), and macrophage expression of dominant-negative RhoA enhanced cholesterol efflux to apoAI (20%, p < 0.05). In addition, atorvastatin increased the RhoA levels in the cytosol fraction and decreased the membrane localization of RhoA. Atorvastatin treatment activated peroxisome proliferator activated receptor gamma and increased LXR-mediated gene expression suggesting that atorvastatin induces cholesterol efflux through a molecular cascade involving inhibition of RhoA signaling, leading to increased peroxisome proliferator activated receptor gamma activity, enhanced LXR activation, increased ABCA1 expression, and cholesterol efflux. Finally, statin treatment inhibited cholesteryl ester accumulation in macrophages challenged with atherogenic hypertriglyceridemic very low density lipoproteins indicating that statins can regulate foam cell formation.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
http://linkedlifedata.com/resource/pubmed/chemical/ATP binding cassette transporter 1, http://linkedlifedata.com/resource/pubmed/chemical/ATP-Binding Cassette Transporters, http://linkedlifedata.com/resource/pubmed/chemical/Apolipoprotein A-I, http://linkedlifedata.com/resource/pubmed/chemical/Cholesterol, http://linkedlifedata.com/resource/pubmed/chemical/Diterpenes, http://linkedlifedata.com/resource/pubmed/chemical/Enzyme Inhibitors, http://linkedlifedata.com/resource/pubmed/chemical/Heptanoic Acids, http://linkedlifedata.com/resource/pubmed/chemical/Hydroxymethylglutaryl CoA Reductases, http://linkedlifedata.com/resource/pubmed/chemical/Hydroxymethylglutaryl-CoA..., http://linkedlifedata.com/resource/pubmed/chemical/Lipoproteins, http://linkedlifedata.com/resource/pubmed/chemical/Mevalonic Acid, http://linkedlifedata.com/resource/pubmed/chemical/PPAR gamma, http://linkedlifedata.com/resource/pubmed/chemical/Polyisoprenyl Phosphates, http://linkedlifedata.com/resource/pubmed/chemical/Pyrroles, http://linkedlifedata.com/resource/pubmed/chemical/RNA, Messenger, http://linkedlifedata.com/resource/pubmed/chemical/Sesquiterpenes, http://linkedlifedata.com/resource/pubmed/chemical/atorvastatin, http://linkedlifedata.com/resource/pubmed/chemical/farnesyl pyrophosphate, http://linkedlifedata.com/resource/pubmed/chemical/geranylgeranyl pyrophosphate, http://linkedlifedata.com/resource/pubmed/chemical/rhoA GTP-Binding Protein
pubmed:status
MEDLINE
pubmed:month
Jun
pubmed:issn
0021-9258
pubmed:author
pubmed:issnType
Print
pubmed:day
10
pubmed:volume
280
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
22212-21
pubmed:dateRevised
2008-9-20
pubmed:meshHeading
pubmed-meshheading:15817453-ATP-Binding Cassette Transporters, pubmed-meshheading:15817453-Animals, pubmed-meshheading:15817453-Apolipoprotein A-I, pubmed-meshheading:15817453-Cell Line, pubmed-meshheading:15817453-Cholesterol, pubmed-meshheading:15817453-Diterpenes, pubmed-meshheading:15817453-Dose-Response Relationship, Drug, pubmed-meshheading:15817453-Enzyme Inhibitors, pubmed-meshheading:15817453-Gene Expression, pubmed-meshheading:15817453-Gene Expression Regulation, pubmed-meshheading:15817453-Genes, Dominant, pubmed-meshheading:15817453-Heptanoic Acids, pubmed-meshheading:15817453-Humans, pubmed-meshheading:15817453-Hydroxymethylglutaryl CoA Reductases, pubmed-meshheading:15817453-Hydroxymethylglutaryl-CoA Reductase Inhibitors, pubmed-meshheading:15817453-Lipid Metabolism, pubmed-meshheading:15817453-Lipoproteins, pubmed-meshheading:15817453-Macrophages, pubmed-meshheading:15817453-Mevalonic Acid, pubmed-meshheading:15817453-Mice, pubmed-meshheading:15817453-Models, Biological, pubmed-meshheading:15817453-PPAR gamma, pubmed-meshheading:15817453-Phosphorylation, pubmed-meshheading:15817453-Polyisoprenyl Phosphates, pubmed-meshheading:15817453-Pyrroles, pubmed-meshheading:15817453-RNA, Messenger, pubmed-meshheading:15817453-Sesquiterpenes, pubmed-meshheading:15817453-Transfection, pubmed-meshheading:15817453-Up-Regulation, pubmed-meshheading:15817453-rhoA GTP-Binding Protein
pubmed:year
2005
pubmed:articleTitle
Regulation of macrophage cholesterol efflux through hydroxymethylglutaryl-CoA reductase inhibition: a role for RhoA in ABCA1-mediated cholesterol efflux.
pubmed:affiliation
Robarts Research Institute, Vascular Biology Group, and the Departments of Medicine and Biochemistry, the University of Western Ontario, London, Ontario N6A 5K8, Canada.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't