Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2005-4-4
pubmed:abstractText
The genes encoding aromatic aminotransferase II (AroAT II) and aspartate aminotransferase (AspAT) from Pyrococcus furiosus have been identified, expressed in Escherichia coli and the recombinant proteins characterized. The AroAT II enzyme was specific for the transamination reaction of the aromatic amino acids, and uses a-ketoglutarate as the amino acceptor. Like the previously characterized AroAT I, AroAT II has highest efficiency for phenylalanine (k(cat)/Km = 923 s(-1) mM(-1)). Northern blot analyses revealed that AroAT I was mainly expressed when tryptone was the primary carbon and energy source. Although the expression was significantly lower, a similar trend was observed for AroAT II. These observations suggest that both AroATs are involved in amino acid degradation. Although AspAT exhibited highest activity with aspartate and alpha-ketoglutarate (k(cat) approximately 105 s(-1)), it also showed significant activity with alanine, glutamate and the aromatic amino acids. With aspartate as the amino donor, AspAT catalyzed the amination of alpha-ketoglutarate, pyruvate and phenyl-pyruvate. No activity was detected with either branched-chain amino acids or alpha-keto acids. The AspAT gene (aspC) was expressed as a polycistronic message as part of the aro operon, with expression observed only when the aromatic amino acids were absent from the growth medium, indicating a role in the biosynthesis of the aromatic amino acids.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-10570129, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-10628865, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-10671523, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-10762259, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-1593633, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-16534963, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-1729242, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-1909112, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-3137225, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-6128337, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-7007315, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-7798192, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-7873596, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-8100416, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-8125113, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-8206994, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-8218300, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-8477701, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-8513804, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-8636014, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-8830684, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-8907187, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-9058208, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-9665711, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-9672687, http://linkedlifedata.com/resource/pubmed/commentcorrection/15803651-9792664
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Sep
pubmed:issn
1472-3646
pubmed:author
pubmed:issnType
Print
pubmed:volume
1
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
133-41
pubmed:dateRevised
2010-9-21
pubmed:meshHeading
pubmed-meshheading:15803651-Amino Acid Sequence, pubmed-meshheading:15803651-Amino Acids, Aromatic, pubmed-meshheading:15803651-Archaeal Proteins, pubmed-meshheading:15803651-Aspartate Aminotransferases, pubmed-meshheading:15803651-Base Sequence, pubmed-meshheading:15803651-Blotting, Northern, pubmed-meshheading:15803651-Conserved Sequence, pubmed-meshheading:15803651-DNA Primers, pubmed-meshheading:15803651-Gene Expression Regulation, Archaeal, pubmed-meshheading:15803651-Molecular Sequence Data, pubmed-meshheading:15803651-Pyrococcus furiosus, pubmed-meshheading:15803651-Recombinant Proteins, pubmed-meshheading:15803651-Restriction Mapping, pubmed-meshheading:15803651-Sequence Alignment, pubmed-meshheading:15803651-Sequence Homology, Amino Acid, pubmed-meshheading:15803651-Substrate Specificity, pubmed-meshheading:15803651-TATA Box
pubmed:year
2002
pubmed:articleTitle
Molecular analysis of the role of two aromatic aminotransferases and a broad-specificity aspartate aminotransferase in the aromatic amino acid metabolism of Pyrococcus furiosus.
pubmed:affiliation
Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6703 CT Wageningen, The Netherlands.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't