Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15791346rdf:typepubmed:Citationlld:pubmed
pubmed-article:15791346lifeskim:mentionsumls-concept:C0178587lld:lifeskim
pubmed-article:15791346lifeskim:mentionsumls-concept:C0521116lld:lifeskim
pubmed-article:15791346pubmed:issue4lld:pubmed
pubmed-article:15791346pubmed:dateCreated2005-3-25lld:pubmed
pubmed-article:15791346pubmed:abstractTextThis paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-microm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined frit-like structure that connects the pumping channel to side reservoirs, where platinum electrodes are located. Current densities up to 4000 A m(-2) could be obtained without noticeable Joule heating in the system. The pump performance was studied as a function of current density and magnetic field intensity, as well as buffer ionic strength and pH. Bead velocities of up to 1 mm s(-1) (0.5 microL min(-1)) were observed in buffered solutions using a 0.4 T NdFeB permanent magnet, at an applied current density of 4000 A m(-2). This pump is intended for transport of electrolyte solutions having a relatively high ionic strength (0.5-1 M) in a DC magnetic field environment. The application of this pump for the study of biological samples in a miniaturized total analysis system (microTAS) with integrated NMR detection is foreseen. In the 7 T NMR environment, a minimum 16-fold increase in volumetric flow rate for a given applied current density is expected.lld:pubmed
pubmed-article:15791346pubmed:languageenglld:pubmed
pubmed-article:15791346pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15791346pubmed:citationSubsetIMlld:pubmed
pubmed-article:15791346pubmed:statusMEDLINElld:pubmed
pubmed-article:15791346pubmed:monthAprlld:pubmed
pubmed-article:15791346pubmed:issn1473-0197lld:pubmed
pubmed-article:15791346pubmed:authorpubmed-author:VerpoorteEElld:pubmed
pubmed-article:15791346pubmed:authorpubmed-author:de...lld:pubmed
pubmed-article:15791346pubmed:authorpubmed-author:van den...lld:pubmed
pubmed-article:15791346pubmed:authorpubmed-author:KosterSanderSlld:pubmed
pubmed-article:15791346pubmed:authorpubmed-author:EijkelJan C...lld:pubmed
pubmed-article:15791346pubmed:authorpubmed-author:HomsyAlexandr...lld:pubmed
pubmed-article:15791346pubmed:authorpubmed-author:LucklumFFlld:pubmed
pubmed-article:15791346pubmed:issnTypePrintlld:pubmed
pubmed-article:15791346pubmed:volume5lld:pubmed
pubmed-article:15791346pubmed:ownerNLMlld:pubmed
pubmed-article:15791346pubmed:authorsCompleteYlld:pubmed
pubmed-article:15791346pubmed:pagination466-71lld:pubmed
pubmed-article:15791346pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:15791346pubmed:meshHeadingpubmed-meshheading:15791346...lld:pubmed
pubmed-article:15791346pubmed:meshHeadingpubmed-meshheading:15791346...lld:pubmed
pubmed-article:15791346pubmed:meshHeadingpubmed-meshheading:15791346...lld:pubmed
pubmed-article:15791346pubmed:meshHeadingpubmed-meshheading:15791346...lld:pubmed
pubmed-article:15791346pubmed:meshHeadingpubmed-meshheading:15791346...lld:pubmed
pubmed-article:15791346pubmed:meshHeadingpubmed-meshheading:15791346...lld:pubmed
pubmed-article:15791346pubmed:meshHeadingpubmed-meshheading:15791346...lld:pubmed
pubmed-article:15791346pubmed:meshHeadingpubmed-meshheading:15791346...lld:pubmed
pubmed-article:15791346pubmed:meshHeadingpubmed-meshheading:15791346...lld:pubmed
pubmed-article:15791346pubmed:year2005lld:pubmed
pubmed-article:15791346pubmed:articleTitleA high current density DC magnetohydrodynamic (MHD) micropump.lld:pubmed
pubmed-article:15791346pubmed:affiliationInstitute of Microtechnology, University of Neuchatel, Switzerland. Alexandra.Homsy@unine.chlld:pubmed
pubmed-article:15791346pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:15791346pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed