Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
9
pubmed:dateCreated
2005-3-3
pubmed:abstractText
This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the utilization of both basis functions and features; these priors act as regularizers for the likelihood function that rewards good classification on the training data. We derive an expectation-maximization (EM) algorithm to efficiently compute a maximum a posteriori (MAP) point estimate of the various parameters. The algorithm is an extension of recent state-of-the-art sparse Bayesian classifiers, which in turn can be seen as Bayesian counterparts of support vector machines. Experimental comparisons using kernel classifiers demonstrate both parsimonious feature selection and excellent classification accuracy on a range of synthetic and benchmark data sets.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Sep
pubmed:issn
0162-8828
pubmed:author
pubmed:issnType
Print
pubmed:volume
26
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
1105-11
pubmed:dateRevised
2006-11-15
pubmed:meshHeading
pubmed-meshheading:15742887-Algorithms, pubmed-meshheading:15742887-Artificial Intelligence, pubmed-meshheading:15742887-Bayes Theorem, pubmed-meshheading:15742887-Cluster Analysis, pubmed-meshheading:15742887-Colonic Neoplasms, pubmed-meshheading:15742887-Computer Simulation, pubmed-meshheading:15742887-Diagnosis, Computer-Assisted, pubmed-meshheading:15742887-Gene Expression Profiling, pubmed-meshheading:15742887-Humans, pubmed-meshheading:15742887-Information Storage and Retrieval, pubmed-meshheading:15742887-Leukemia, pubmed-meshheading:15742887-Models, Biological, pubmed-meshheading:15742887-Models, Statistical, pubmed-meshheading:15742887-Pattern Recognition, Automated, pubmed-meshheading:15742887-Reproducibility of Results, pubmed-meshheading:15742887-Sensitivity and Specificity, pubmed-meshheading:15742887-Tumor Markers, Biological
pubmed:year
2004
pubmed:articleTitle
A bayesian approach to joint feature selection and classifier design.
pubmed:affiliation
Department of Electrical Engineering, Duke University, Durham, NC 27708-0291, USA. balaji@ee.duke.edu
pubmed:publicationType
Journal Article, Comparative Study, Evaluation Studies