Source:http://linkedlifedata.com/resource/pubmed/id/15718501
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions |
umls-concept:C0006675,
umls-concept:C0021469,
umls-concept:C0030685,
umls-concept:C0034693,
umls-concept:C0034721,
umls-concept:C0151744,
umls-concept:C0231174,
umls-concept:C0391871,
umls-concept:C0449774,
umls-concept:C0680255,
umls-concept:C1283071,
umls-concept:C1948027,
umls-concept:C1963578,
umls-concept:C2339371
|
pubmed:issue |
5
|
pubmed:dateCreated |
2005-3-18
|
pubmed:abstractText |
Metabolic inhibition (MI) contributes to contractile failure during cardiac ischemia and systolic heart failure, in part due to decreased excitation-contraction (E-C) coupling gain. To investigate the underlying mechanism, we studied subcellular Ca2+ release patterns in whole cell patch clamped rat ventricular myocytes using two-dimensional high-speed laser scanning confocal microscopy. In cells loaded with the Ca2+ buffer EGTA (5 mmol/L) and the fluorescent Ca2+-indicator fluo-3 (1 mmol/L), depolarization from -40 to 0 mV elicited a striped pattern of Ca2+ release. This pattern represents the simultaneous activation of multiple Ca2+ release sites along transverse-tubules. During inhibition of both oxidative and glycolytic metabolism using carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, 50 nmol/L) and 2-deoxyglucose (2-DG, 10 mmol/L), there was a decrease in inward Ca2+ current (ICa), the spatially averaged Ca2+ transient, and E-C coupling gain, but no reduction in sarcoplasmic reticulum Ca2+ content. The striped pattern of subcellular Ca2+ release became fractured, or disappeared altogether, corresponding to a marked decrease in the area of the cell exhibiting organized Ca2+ release. There was no significant change in the intensity or kinetics of local Ca2+ release. The mechanism is not fully explained by dephosphorylation of L-type Ca2+ channels, because a similar degree of ICa"rundown" in control cells did NOT result in fracturing of the Ca2+ release pattern. We conclude that metabolic inhibition interferes with E-C coupling by (1) reducing trigger Ca2+, and (2) directly inhibiting sarcoplasmic reticulum Ca2+ release site open probability.
|
pubmed:grant | |
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:chemical |
http://linkedlifedata.com/resource/pubmed/chemical/Calcium,
http://linkedlifedata.com/resource/pubmed/chemical/Calcium Channels, L-Type,
http://linkedlifedata.com/resource/pubmed/chemical/Carbonyl Cyanide...,
http://linkedlifedata.com/resource/pubmed/chemical/Deoxyglucose,
http://linkedlifedata.com/resource/pubmed/chemical/Ryanodine Receptor Calcium Release...,
http://linkedlifedata.com/resource/pubmed/chemical/Sodium
|
pubmed:status |
MEDLINE
|
pubmed:month |
Mar
|
pubmed:issn |
1524-4571
|
pubmed:author | |
pubmed:issnType |
Electronic
|
pubmed:day |
18
|
pubmed:volume |
96
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
551-7
|
pubmed:dateRevised |
2007-11-15
|
pubmed:meshHeading |
pubmed-meshheading:15718501-Aerobiosis,
pubmed-meshheading:15718501-Animals,
pubmed-meshheading:15718501-Calcium,
pubmed-meshheading:15718501-Calcium Channels, L-Type,
pubmed-meshheading:15718501-Calcium Signaling,
pubmed-meshheading:15718501-Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone,
pubmed-meshheading:15718501-Cells, Cultured,
pubmed-meshheading:15718501-Deoxyglucose,
pubmed-meshheading:15718501-Glycolysis,
pubmed-meshheading:15718501-Heart Failure,
pubmed-meshheading:15718501-Heart Ventricles,
pubmed-meshheading:15718501-Ion Transport,
pubmed-meshheading:15718501-Microscopy, Confocal,
pubmed-meshheading:15718501-Myocardial Ischemia,
pubmed-meshheading:15718501-Myocytes, Cardiac,
pubmed-meshheading:15718501-Patch-Clamp Techniques,
pubmed-meshheading:15718501-Rats,
pubmed-meshheading:15718501-Ryanodine Receptor Calcium Release Channel,
pubmed-meshheading:15718501-Sarcoplasmic Reticulum,
pubmed-meshheading:15718501-Sodium,
pubmed-meshheading:15718501-Subcellular Fractions
|
pubmed:year |
2005
|
pubmed:articleTitle |
Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure.
|
pubmed:affiliation |
Department of Medicine, Cardiovascular Research Laboratories, Geffen School of Medicine at UCLA, Los Angeles, Calif 90095-1679, USA.
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, P.H.S.,
Research Support, Non-U.S. Gov't,
Research Support, N.I.H., Extramural
|