Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
10A
pubmed:dateCreated
2004-10-6
pubmed:abstractText
The prediction of subcellular localization of proteins from their primary sequence is a challenging problem in bioinformatics. We have created a Bayesian network localization predictor called PSLT that is based on the combinatorial presence of InterPro motifs and specific membrane domains in human proteins. This probabilistic framework generates a likelihood of localization to all organelles and allows to predict multicompartmental proteins. When used to predict on nine compartments, PSLT achieves an accuracy of 78% as estimated by using a 10-fold cross-validation test and a coverage of 74%. When used to predict the localization of proteins from other closely related species, it achieves a prediction accuracy and a coverage >80%. We compared the localization predictions of PSLT to those determined through GFP-tagging and microscopy for a group of human proteins. We found two general classes of proteins that are mislocalized by the GFP-tagging strategy but are correctly localized by PSLT. This suggests that PSLT can be used in combination with experimental approaches for localization to identify proteins for which additional experimental validation is required. We used our predictor to annotate all 9793 human proteins from SWISS-PROT release 41.25, 16% of which are predicted by PSLT to be present in more than one compartment.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-10209150, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-10446385, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-10487860, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-10488062, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-10720935, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-10891285, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-10966805, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-11035803, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-11042173, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-11152613, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-11256614, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-11288174, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-11524373, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-11590104, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-11752257, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-11787063, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-12176924, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-12186861, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-12503317, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-12520011, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-12520024, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-12573857, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-12672469, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-1332192, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-14562095, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-14623335, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-14634622, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-14681466, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-14693804, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-14751973, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-1478671, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-14990451, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-14991001, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-2197415, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-7585954, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-8877510, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-8944766, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-9547285, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-9695832, http://linkedlifedata.com/resource/pubmed/commentcorrection/15466294-9724794
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Oct
pubmed:issn
1088-9051
pubmed:author
pubmed:issnType
Print
pubmed:volume
14
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
1957-66
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
2004
pubmed:articleTitle
Predicting subcellular localization via protein motif co-occurrence.
pubmed:affiliation
McGill Center for Bioinformatics, McGill University, Montreal, Quebec H3A 2B4, Canada.
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't