Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
9
pubmed:dateCreated
2004-9-3
pubmed:abstractText
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycolytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycolysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-10336421, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-10419970, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-10477308, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-10618490, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-10627042, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-11101808, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-11158356, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-11159431, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-11748728, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-11751819, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-14907713, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-15071495, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-1523884, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-1530563, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-1533788, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-1572535, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-2528863, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-2660462, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-2744487, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-3007939, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-3053662, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-4148886, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-6300872, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-6394957, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-7036694, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-7575476, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-7597844, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-7651133, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-7862149, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-7921242, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-8002563, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-8106337, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-8354408, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-8366037, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-8403984, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-8438231, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-8929273, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-9025295, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-9151960, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-9299703, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-9393686, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-9457857, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-9529885, http://linkedlifedata.com/resource/pubmed/commentcorrection/15345416-9580251
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Sep
pubmed:issn
0099-2240
pubmed:author
pubmed:issnType
Print
pubmed:volume
70
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
5323-30
pubmed:dateRevised
2010-9-21
pubmed:meshHeading
pubmed:year
2004
pubmed:articleTitle
Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae.
pubmed:affiliation
Department of Chemistry and Bioscience-Molecular Biotechnology, Chalmers University of Technology, Box 462, SE-405 30 Göteborg, Sweden. Karin.Otterstedt@molbiotech.chalmers.se
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't