Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15317449rdf:typepubmed:Citationlld:pubmed
pubmed-article:15317449lifeskim:mentionsumls-concept:C0376298lld:lifeskim
pubmed-article:15317449lifeskim:mentionsumls-concept:C0332161lld:lifeskim
pubmed-article:15317449lifeskim:mentionsumls-concept:C1274040lld:lifeskim
pubmed-article:15317449lifeskim:mentionsumls-concept:C1522290lld:lifeskim
pubmed-article:15317449lifeskim:mentionsumls-concept:C0205195lld:lifeskim
pubmed-article:15317449lifeskim:mentionsumls-concept:C1552081lld:lifeskim
pubmed-article:15317449pubmed:issue18lld:pubmed
pubmed-article:15317449pubmed:dateCreated2004-8-19lld:pubmed
pubmed-article:15317449pubmed:abstractTextWe have previously shown that a machine learning technique can improve the enrichment of high-throughput docking (HTD) results. In the previous cases studied, however, the application of a naive Bayes classifier failed to improve enrichment for instances where HTD alone was unable to generate an acceptable enrichment. We present here a protocol to rescue poor docking results a priori using a combination of rank-by-median consensus scoring and naive Bayesian categorization.lld:pubmed
pubmed-article:15317449pubmed:languageenglld:pubmed
pubmed-article:15317449pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15317449pubmed:citationSubsetIMlld:pubmed
pubmed-article:15317449pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15317449pubmed:statusMEDLINElld:pubmed
pubmed-article:15317449pubmed:monthAuglld:pubmed
pubmed-article:15317449pubmed:issn0022-2623lld:pubmed
pubmed-article:15317449pubmed:authorpubmed-author:GlickMeirMlld:pubmed
pubmed-article:15317449pubmed:authorpubmed-author:DaviesJohn...lld:pubmed
pubmed-article:15317449pubmed:authorpubmed-author:KlonAnthony...lld:pubmed
pubmed-article:15317449pubmed:issnTypePrintlld:pubmed
pubmed-article:15317449pubmed:day26lld:pubmed
pubmed-article:15317449pubmed:volume47lld:pubmed
pubmed-article:15317449pubmed:ownerNLMlld:pubmed
pubmed-article:15317449pubmed:authorsCompleteYlld:pubmed
pubmed-article:15317449pubmed:pagination4356-9lld:pubmed
pubmed-article:15317449pubmed:meshHeadingpubmed-meshheading:15317449...lld:pubmed
pubmed-article:15317449pubmed:meshHeadingpubmed-meshheading:15317449...lld:pubmed
pubmed-article:15317449pubmed:meshHeadingpubmed-meshheading:15317449...lld:pubmed
pubmed-article:15317449pubmed:meshHeadingpubmed-meshheading:15317449...lld:pubmed
pubmed-article:15317449pubmed:meshHeadingpubmed-meshheading:15317449...lld:pubmed
pubmed-article:15317449pubmed:meshHeadingpubmed-meshheading:15317449...lld:pubmed
pubmed-article:15317449pubmed:meshHeadingpubmed-meshheading:15317449...lld:pubmed
pubmed-article:15317449pubmed:year2004lld:pubmed
pubmed-article:15317449pubmed:articleTitleCombination of a naive Bayes classifier with consensus scoring improves enrichment of high-throughput docking results.lld:pubmed
pubmed-article:15317449pubmed:affiliationNovartis Institute for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. anthony.klon@pharma.novartis.comlld:pubmed
pubmed-article:15317449pubmed:publicationTypeJournal Articlelld:pubmed