Source:http://linkedlifedata.com/resource/pubmed/id/15317449
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
18
|
pubmed:dateCreated |
2004-8-19
|
pubmed:abstractText |
We have previously shown that a machine learning technique can improve the enrichment of high-throughput docking (HTD) results. In the previous cases studied, however, the application of a naive Bayes classifier failed to improve enrichment for instances where HTD alone was unable to generate an acceptable enrichment. We present here a protocol to rescue poor docking results a priori using a combination of rank-by-median consensus scoring and naive Bayesian categorization.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:chemical | |
pubmed:status |
MEDLINE
|
pubmed:month |
Aug
|
pubmed:issn |
0022-2623
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:day |
26
|
pubmed:volume |
47
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
4356-9
|
pubmed:meshHeading |
pubmed-meshheading:15317449-Algorithms,
pubmed-meshheading:15317449-Artificial Intelligence,
pubmed-meshheading:15317449-Databases, Protein,
pubmed-meshheading:15317449-Drug Design,
pubmed-meshheading:15317449-Models, Statistical,
pubmed-meshheading:15317449-Protein Binding,
pubmed-meshheading:15317449-Proteins
|
pubmed:year |
2004
|
pubmed:articleTitle |
Combination of a naive Bayes classifier with consensus scoring improves enrichment of high-throughput docking results.
|
pubmed:affiliation |
Novartis Institute for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA. anthony.klon@pharma.novartis.com
|
pubmed:publicationType |
Journal Article
|