Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
1
pubmed:dateCreated
2004-7-12
pubmed:abstractText
The neuronal voltage-gated sodium channels play a vital role in the action potential waveform shaping and propagation. Here, we report the effects of prolonged depolarization (1-160 s) on the detailed kinetics of activation, fast inactivation and recovery from slow inactivation in the rNa(v)1.2a voltage-gated sodium channel alpha-subunit expressed in Chinese hamster ovary (CHO) cells. Wavelet analysis revealed that the duration and amplitude of a prolonged sustained depolarization altered all the steady state and kinetic parameters of the channel in a pseudo-oscillatory fashion with time-variable period and amplitude, often superimposed on a linear trend. The half steady state activation potential showed a reversible depolarizing shift of 5-10 mV with duration of prolonged depolarization, while half steady state inactivation potential showed a hyperpolarizing shift of 43-55 mV. The time periods for most of the parameters relating to activation and fast and slow inactivation, lie close to 28-30 s, suggesting coupling of these kinetic processes through an oscillatory mechanism. Co-expression of the beta1-subunit affected the time periods of oscillation (close to 22 s for alpha + beta1) in steady state activation parameters. Application of a pulse protocol that mimicked paroxysmal depolarizing shift (PDS), a kind of depolarization seen in epileptic discharges, instead of a sustained depolarization, also caused oscillatory behaviour in the rNav1.2a alpha-subunit. This inherent pseudo-oscillatory mechanism may regulate excitability of the neurons, account for the epileptic discharges and subthreshold membrane potential oscillation and offer a molecular memory mechanism intrinsic to the neurons, independent of synaptic plasticity.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
0953-816X
pubmed:author
pubmed:issnType
Print
pubmed:volume
20
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
127-43
pubmed:dateRevised
2006-11-15
pubmed:meshHeading
pubmed-meshheading:15245486-Analysis of Variance, pubmed-meshheading:15245486-Animals, pubmed-meshheading:15245486-CHO Cells, pubmed-meshheading:15245486-Cricetinae, pubmed-meshheading:15245486-Cricetulus, pubmed-meshheading:15245486-Electric Stimulation, pubmed-meshheading:15245486-Green Fluorescent Proteins, pubmed-meshheading:15245486-Ion Channel Gating, pubmed-meshheading:15245486-Kinetics, pubmed-meshheading:15245486-Luminescent Proteins, pubmed-meshheading:15245486-Membrane Potentials, pubmed-meshheading:15245486-Models, Neurological, pubmed-meshheading:15245486-Neural Inhibition, pubmed-meshheading:15245486-Patch-Clamp Techniques, pubmed-meshheading:15245486-Sodium Channel Blockers, pubmed-meshheading:15245486-Sodium Channels, pubmed-meshheading:15245486-Tetrodotoxin, pubmed-meshheading:15245486-Time Factors, pubmed-meshheading:15245486-Transfection
pubmed:year
2004
pubmed:articleTitle
Induction of pseudo-periodic oscillation in voltage-gated sodium channel properties is dependent on the duration of prolonged depolarization.
pubmed:affiliation
Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India.
pubmed:publicationType
Journal Article, Comparative Study, Research Support, Non-U.S. Gov't