Source:http://linkedlifedata.com/resource/pubmed/id/15208315
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
36
|
pubmed:dateCreated |
2004-8-30
|
pubmed:databankReference | |
pubmed:abstractText |
Three nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca(2+)/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS. Our discovery of the autoinhibitory helix, its placement between domains, and striking similarities with canonical calmodulin-binding motifs, support new mechanisms for NOS inhibition. NADPH, isozyme-specific residue Arg(1400), and the C-terminal tail synergistically repress NOS activity by locking the FMN binding domain in an electron-accepting position. Our analyses suggest that calmodulin binding or C-terminal tail phosphorylation frees a large scale swinging motion of the entire FMN domain to deliver electrons to the catalytic module in the holoenzyme.
|
pubmed:grant | |
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:chemical |
http://linkedlifedata.com/resource/pubmed/chemical/Flavins,
http://linkedlifedata.com/resource/pubmed/chemical/Isoenzymes,
http://linkedlifedata.com/resource/pubmed/chemical/NOS1 protein, human,
http://linkedlifedata.com/resource/pubmed/chemical/Nitric Oxide Synthase,
http://linkedlifedata.com/resource/pubmed/chemical/Nitric Oxide Synthase Type I,
http://linkedlifedata.com/resource/pubmed/chemical/Nos1 protein, rat
|
pubmed:status |
MEDLINE
|
pubmed:month |
Sep
|
pubmed:issn |
0021-9258
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:day |
3
|
pubmed:volume |
279
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
37918-27
|
pubmed:dateRevised |
2007-11-14
|
pubmed:meshHeading |
pubmed-meshheading:15208315-Amino Acid Sequence,
pubmed-meshheading:15208315-Animals,
pubmed-meshheading:15208315-Binding Sites,
pubmed-meshheading:15208315-Catalysis,
pubmed-meshheading:15208315-Electron Transport,
pubmed-meshheading:15208315-Flavins,
pubmed-meshheading:15208315-Humans,
pubmed-meshheading:15208315-Isoenzymes,
pubmed-meshheading:15208315-Models, Molecular,
pubmed-meshheading:15208315-Molecular Sequence Data,
pubmed-meshheading:15208315-Mutagenesis,
pubmed-meshheading:15208315-Nitric Oxide Synthase,
pubmed-meshheading:15208315-Nitric Oxide Synthase Type I,
pubmed-meshheading:15208315-Protein Conformation,
pubmed-meshheading:15208315-Rats,
pubmed-meshheading:15208315-Sequence Homology, Amino Acid,
pubmed-meshheading:15208315-X-Ray Diffraction
|
pubmed:year |
2004
|
pubmed:articleTitle |
Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase.
|
pubmed:affiliation |
Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA. edg@scripps.edu
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, P.H.S.,
Research Support, Non-U.S. Gov't
|