rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
2
|
pubmed:dateCreated |
2004-6-18
|
pubmed:abstractText |
There is evidence that LDL oxidation may render the lipoprotein atherogenic. The myeloperoxidase-hydrogen peroxide (MPO/H2O2) system of activated phagocytes may be involved in this process. Chloride is supposed to be the major substrate for MPO, generating reactive hypochlorous acid (HOCl), modifying LDL. The pseudo-halide thiocyanate (SCN-) has been shown to be a suitable substrate for MPO, forming reactive HOSCN/SCN*. As relatively abundant levels of SCN- are found in plasma of smokers--a well-known risk group for cardiovascular disease--the ability of SCN- to act as a catalyst of LDL atherogenic modification by MPO/H2O2 was tested. Measurement of conjugated diene and lipid hydroperoxide formation in LDL preparations exposed to MPO/H2O2 revealed that SCN- catalyzed lipid oxidation in LDL. Chloride did not diminish the effect of SCN- on lipid oxidation. Surprisingly, SCN inhibited the HOCl-mediated apoprotein modification in LDL. Nitrite--recently found to be a substrate for MPO--showed some competing properties. MPO-mediated lipid oxidation was inhibited by heme poisons (azide, cyanide) and catalase. Ascorbic acid was the most effective compound in inhibiting the SCN- -catalyzed reaction. Bilirubin showed some action, whereas tocopherol was ineffective. When LDL oxidation was performed with activated human neutrophils, which employ the MPO pathway, SCN- catalyzed the cell-mediated LDL oxidation. The MPO/H2O2/SCN- system may have the potential to play a significant role in the oxidative modification of LDL--an observation further pointing to the link between the long-recognized risk factors of atherosclerosis: elevated levels of LDL and smoking.
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
http://linkedlifedata.com/resource/pubmed/chemical/Antioxidants,
http://linkedlifedata.com/resource/pubmed/chemical/Apoproteins,
http://linkedlifedata.com/resource/pubmed/chemical/Ascorbic Acid,
http://linkedlifedata.com/resource/pubmed/chemical/Azoles,
http://linkedlifedata.com/resource/pubmed/chemical/Catalase,
http://linkedlifedata.com/resource/pubmed/chemical/Chlorides,
http://linkedlifedata.com/resource/pubmed/chemical/Cyclooxygenase Inhibitors,
http://linkedlifedata.com/resource/pubmed/chemical/Free Radicals,
http://linkedlifedata.com/resource/pubmed/chemical/Heme,
http://linkedlifedata.com/resource/pubmed/chemical/Hydrogen Peroxide,
http://linkedlifedata.com/resource/pubmed/chemical/Hypochlorous Acid,
http://linkedlifedata.com/resource/pubmed/chemical/Lipids,
http://linkedlifedata.com/resource/pubmed/chemical/Lipoproteins, LDL,
http://linkedlifedata.com/resource/pubmed/chemical/Nitrites,
http://linkedlifedata.com/resource/pubmed/chemical/Organoselenium Compounds,
http://linkedlifedata.com/resource/pubmed/chemical/Oxygen,
http://linkedlifedata.com/resource/pubmed/chemical/Peroxidase,
http://linkedlifedata.com/resource/pubmed/chemical/Thiocyanates,
http://linkedlifedata.com/resource/pubmed/chemical/ebselen,
http://linkedlifedata.com/resource/pubmed/chemical/thiocyanate
|
pubmed:status |
MEDLINE
|
pubmed:month |
Jul
|
pubmed:issn |
0891-5849
|
pubmed:author |
|
pubmed:issnType |
Print
|
pubmed:day |
15
|
pubmed:volume |
37
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
146-55
|
pubmed:dateRevised |
2005-11-17
|
pubmed:meshHeading |
pubmed-meshheading:15203186-Antioxidants,
pubmed-meshheading:15203186-Apoproteins,
pubmed-meshheading:15203186-Ascorbic Acid,
pubmed-meshheading:15203186-Azoles,
pubmed-meshheading:15203186-Catalase,
pubmed-meshheading:15203186-Catalysis,
pubmed-meshheading:15203186-Chlorides,
pubmed-meshheading:15203186-Cyclooxygenase Inhibitors,
pubmed-meshheading:15203186-Dose-Response Relationship, Drug,
pubmed-meshheading:15203186-Female,
pubmed-meshheading:15203186-Free Radicals,
pubmed-meshheading:15203186-Heme,
pubmed-meshheading:15203186-Humans,
pubmed-meshheading:15203186-Hydrogen Peroxide,
pubmed-meshheading:15203186-Hypochlorous Acid,
pubmed-meshheading:15203186-Lipid Metabolism,
pubmed-meshheading:15203186-Lipid Peroxidation,
pubmed-meshheading:15203186-Lipids,
pubmed-meshheading:15203186-Lipoproteins, LDL,
pubmed-meshheading:15203186-Male,
pubmed-meshheading:15203186-Neutrophils,
pubmed-meshheading:15203186-Nitrites,
pubmed-meshheading:15203186-Organoselenium Compounds,
pubmed-meshheading:15203186-Oxygen,
pubmed-meshheading:15203186-Peroxidase,
pubmed-meshheading:15203186-Phagocytes,
pubmed-meshheading:15203186-Phagocytosis,
pubmed-meshheading:15203186-Risk Factors,
pubmed-meshheading:15203186-Smoking,
pubmed-meshheading:15203186-Thiocyanates,
pubmed-meshheading:15203186-Time Factors,
pubmed-meshheading:15203186-Ultracentrifugation
|
pubmed:year |
2004
|
pubmed:articleTitle |
Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL.
|
pubmed:affiliation |
Department of Laboratory Medicine, Medical University of Vienna, A-1090, Austria.
|
pubmed:publicationType |
Journal Article
|