Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
2
pubmed:dateCreated
2004-6-18
pubmed:abstractText
There is evidence that LDL oxidation may render the lipoprotein atherogenic. The myeloperoxidase-hydrogen peroxide (MPO/H2O2) system of activated phagocytes may be involved in this process. Chloride is supposed to be the major substrate for MPO, generating reactive hypochlorous acid (HOCl), modifying LDL. The pseudo-halide thiocyanate (SCN-) has been shown to be a suitable substrate for MPO, forming reactive HOSCN/SCN*. As relatively abundant levels of SCN- are found in plasma of smokers--a well-known risk group for cardiovascular disease--the ability of SCN- to act as a catalyst of LDL atherogenic modification by MPO/H2O2 was tested. Measurement of conjugated diene and lipid hydroperoxide formation in LDL preparations exposed to MPO/H2O2 revealed that SCN- catalyzed lipid oxidation in LDL. Chloride did not diminish the effect of SCN- on lipid oxidation. Surprisingly, SCN inhibited the HOCl-mediated apoprotein modification in LDL. Nitrite--recently found to be a substrate for MPO--showed some competing properties. MPO-mediated lipid oxidation was inhibited by heme poisons (azide, cyanide) and catalase. Ascorbic acid was the most effective compound in inhibiting the SCN- -catalyzed reaction. Bilirubin showed some action, whereas tocopherol was ineffective. When LDL oxidation was performed with activated human neutrophils, which employ the MPO pathway, SCN- catalyzed the cell-mediated LDL oxidation. The MPO/H2O2/SCN- system may have the potential to play a significant role in the oxidative modification of LDL--an observation further pointing to the link between the long-recognized risk factors of atherosclerosis: elevated levels of LDL and smoking.
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
http://linkedlifedata.com/resource/pubmed/chemical/Antioxidants, http://linkedlifedata.com/resource/pubmed/chemical/Apoproteins, http://linkedlifedata.com/resource/pubmed/chemical/Ascorbic Acid, http://linkedlifedata.com/resource/pubmed/chemical/Azoles, http://linkedlifedata.com/resource/pubmed/chemical/Catalase, http://linkedlifedata.com/resource/pubmed/chemical/Chlorides, http://linkedlifedata.com/resource/pubmed/chemical/Cyclooxygenase Inhibitors, http://linkedlifedata.com/resource/pubmed/chemical/Free Radicals, http://linkedlifedata.com/resource/pubmed/chemical/Heme, http://linkedlifedata.com/resource/pubmed/chemical/Hydrogen Peroxide, http://linkedlifedata.com/resource/pubmed/chemical/Hypochlorous Acid, http://linkedlifedata.com/resource/pubmed/chemical/Lipids, http://linkedlifedata.com/resource/pubmed/chemical/Lipoproteins, LDL, http://linkedlifedata.com/resource/pubmed/chemical/Nitrites, http://linkedlifedata.com/resource/pubmed/chemical/Organoselenium Compounds, http://linkedlifedata.com/resource/pubmed/chemical/Oxygen, http://linkedlifedata.com/resource/pubmed/chemical/Peroxidase, http://linkedlifedata.com/resource/pubmed/chemical/Thiocyanates, http://linkedlifedata.com/resource/pubmed/chemical/ebselen, http://linkedlifedata.com/resource/pubmed/chemical/thiocyanate
pubmed:status
MEDLINE
pubmed:month
Jul
pubmed:issn
0891-5849
pubmed:author
pubmed:issnType
Print
pubmed:day
15
pubmed:volume
37
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
146-55
pubmed:dateRevised
2005-11-17
pubmed:meshHeading
pubmed-meshheading:15203186-Antioxidants, pubmed-meshheading:15203186-Apoproteins, pubmed-meshheading:15203186-Ascorbic Acid, pubmed-meshheading:15203186-Azoles, pubmed-meshheading:15203186-Catalase, pubmed-meshheading:15203186-Catalysis, pubmed-meshheading:15203186-Chlorides, pubmed-meshheading:15203186-Cyclooxygenase Inhibitors, pubmed-meshheading:15203186-Dose-Response Relationship, Drug, pubmed-meshheading:15203186-Female, pubmed-meshheading:15203186-Free Radicals, pubmed-meshheading:15203186-Heme, pubmed-meshheading:15203186-Humans, pubmed-meshheading:15203186-Hydrogen Peroxide, pubmed-meshheading:15203186-Hypochlorous Acid, pubmed-meshheading:15203186-Lipid Metabolism, pubmed-meshheading:15203186-Lipid Peroxidation, pubmed-meshheading:15203186-Lipids, pubmed-meshheading:15203186-Lipoproteins, LDL, pubmed-meshheading:15203186-Male, pubmed-meshheading:15203186-Neutrophils, pubmed-meshheading:15203186-Nitrites, pubmed-meshheading:15203186-Organoselenium Compounds, pubmed-meshheading:15203186-Oxygen, pubmed-meshheading:15203186-Peroxidase, pubmed-meshheading:15203186-Phagocytes, pubmed-meshheading:15203186-Phagocytosis, pubmed-meshheading:15203186-Risk Factors, pubmed-meshheading:15203186-Smoking, pubmed-meshheading:15203186-Thiocyanates, pubmed-meshheading:15203186-Time Factors, pubmed-meshheading:15203186-Ultracentrifugation
pubmed:year
2004
pubmed:articleTitle
Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL.
pubmed:affiliation
Department of Laboratory Medicine, Medical University of Vienna, A-1090, Austria.
pubmed:publicationType
Journal Article