Source:http://linkedlifedata.com/resource/pubmed/id/15006025
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
1
|
pubmed:dateCreated |
2004-3-9
|
pubmed:abstractText |
In order to analyze the stochastic property of multilayered perceptrons or other learning machines, we deal with simpler models and derive the asymptotic distribution of the least-squares estimators of their parameters. In the case where a model is unidentified, we show different results from traditional linear models: the well-known property of asymptotic normality never holds for the estimates of redundant parameters.
|
pubmed:language |
eng
|
pubmed:journal | |
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:month |
Jan
|
pubmed:issn |
0899-7667
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
16
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
99-114
|
pubmed:meshHeading |
pubmed-meshheading:15006025-Algorithms,
pubmed-meshheading:15006025-Artificial Intelligence,
pubmed-meshheading:15006025-Least-Squares Analysis,
pubmed-meshheading:15006025-Linear Models,
pubmed-meshheading:15006025-Neural Networks (Computer),
pubmed-meshheading:15006025-Reproducibility of Results,
pubmed-meshheading:15006025-Stochastic Processes
|
pubmed:year |
2004
|
pubmed:articleTitle |
On the asymptotic distribution of the least-squares estimators in unidentifiable models.
|
pubmed:affiliation |
Department of Information and Computer Engineering, Toyota National College of Technology, Toyota, Aichi, Japan. hayasaka@toyota-ct.ac.jp
|
pubmed:publicationType |
Journal Article
|