rdf:type |
|
lifeskim:mentions |
|
pubmed:dateCreated |
2003-10-29
|
pubmed:abstractText |
A potential benefit of profiling of tissue samples using microarrays is the generation of molecular fingerprints that will define subtypes of disease. Hierarchical clustering has been the primary analytical tool used to define disease subtypes from microarray experiments in cancer settings. Assessing cluster reliability poses a major complication in analyzing output from clustering procedures. While most work has focused on estimating the number of clusters in a dataset, the question of stability of individual-level clusters has not been addressed.
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-10582567,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-10676951,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-10952317,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-11035779,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-11301299,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-11385503,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-11470909,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-11928511,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-12184810,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-12424117,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12959646-9843981
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:month |
Sep
|
pubmed:issn |
1471-2105
|
pubmed:author |
|
pubmed:issnType |
Electronic
|
pubmed:day |
6
|
pubmed:volume |
4
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
36
|
pubmed:dateRevised |
2011-11-17
|
pubmed:meshHeading |
pubmed-meshheading:12959646-Algorithms,
pubmed-meshheading:12959646-Child,
pubmed-meshheading:12959646-Cluster Analysis,
pubmed-meshheading:12959646-Computational Biology,
pubmed-meshheading:12959646-Gene Expression Profiling,
pubmed-meshheading:12959646-Gene Expression Regulation, Neoplastic,
pubmed-meshheading:12959646-Genes, Neoplasm,
pubmed-meshheading:12959646-Humans,
pubmed-meshheading:12959646-Lymphoma, B-Cell,
pubmed-meshheading:12959646-Lymphoma, Large B-Cell, Diffuse,
pubmed-meshheading:12959646-Melanoma,
pubmed-meshheading:12959646-Neoplasms,
pubmed-meshheading:12959646-Oligonucleotide Array Sequence Analysis,
pubmed-meshheading:12959646-Sarcoma, Ewing
|
pubmed:year |
2003
|
pubmed:articleTitle |
Cluster stability scores for microarray data in cancer studies.
|
pubmed:affiliation |
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA. Marksmolkin@hotmail.com
|
pubmed:publicationType |
Journal Article,
Comparative Study,
Research Support, Non-U.S. Gov't
|