rdf:type |
|
lifeskim:mentions |
umls-concept:C0026377,
umls-concept:C0039062,
umls-concept:C0205314,
umls-concept:C0221874,
umls-concept:C0441712,
umls-concept:C0444626,
umls-concept:C0679622,
umls-concept:C0991876,
umls-concept:C1523987,
umls-concept:C1704737,
umls-concept:C1721094,
umls-concept:C1879547
|
pubmed:issue |
18
|
pubmed:dateCreated |
2003-9-4
|
pubmed:databankReference |
|
pubmed:abstractText |
Escherichia coli phage P1 Cre recombinase catalyzes the site-specific recombination of DNA containing loxP sites. We report here two crystal structures of a wild-type Cre recombinase-loxP synaptic complex corresponding to two distinct reaction states: an initial pre-cleavage complex, trapped using a phosphorothioate modification at the cleavable scissile bond that prevents the recombination reaction, and a 3'-phosphotyrosine protein-DNA intermediate resulting from the first strand cleavage. In contrast to previously determined Cre complexes, both structures contain a full tetrameric complex in the asymmetric unit, unequivocally showing that the anti-parallel arrangement of the loxP sites is an intrinsic property of the Cre-loxP recombination synapse. The conformation of the spacer is different to the one observed for the symmetrized loxS site: a kink next to the scissile phosphate in the top strand of the pre-cleavage complex leads to unstacking of the TpG step and a widening of the minor groove. This side of the spacer is interacting with a 'cleavage-competent' Cre subunit, suggesting that the first cleavage occurs at the ApT step in the top strand. This is further confirmed by the structure of the 3'-phosphotyrosine intermediate, where the DNA is cleaved in the top strands and covalently linked to the 'cleavage-competent' subunits. The cleavage is followed by a movement of the C-terminal part containing the attacking Y324 and the helix N interacting with the 'non-cleaving' subunit. This rearrangement could be responsible for the interconversion of Cre subunits. Our results also suggest that the Cre-induced kink next to the scissile phosphodiester activates the DNA for cleavage at this position and facilitates strand transfer.
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-10377382,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-10748094,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-11265749,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-11265752,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-11340053,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-11567147,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-11584291,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-11584294,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-11601846,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-12051940,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-12136136,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-12559909,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-15299374,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-2266559,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-2411211,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-2821547,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-2970060,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-2975338,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-6319400,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-8016642,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-9288963,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-9670032,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-9714735,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-9757107,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12954782-9860822
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
|
pubmed:status |
MEDLINE
|
pubmed:month |
Sep
|
pubmed:issn |
1362-4962
|
pubmed:author |
|
pubmed:issnType |
Electronic
|
pubmed:day |
15
|
pubmed:volume |
31
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
5449-60
|
pubmed:dateRevised |
2009-11-18
|
pubmed:meshHeading |
pubmed-meshheading:12954782-Base Sequence,
pubmed-meshheading:12954782-Binding Sites,
pubmed-meshheading:12954782-Crystallography, X-Ray,
pubmed-meshheading:12954782-DNA,
pubmed-meshheading:12954782-Dimerization,
pubmed-meshheading:12954782-Integrases,
pubmed-meshheading:12954782-Models, Molecular,
pubmed-meshheading:12954782-Nucleic Acid Conformation,
pubmed-meshheading:12954782-Oligonucleotides,
pubmed-meshheading:12954782-Protein Binding,
pubmed-meshheading:12954782-Protein Conformation,
pubmed-meshheading:12954782-Recombination, Genetic,
pubmed-meshheading:12954782-Thionucleotides,
pubmed-meshheading:12954782-Viral Proteins
|
pubmed:year |
2003
|
pubmed:articleTitle |
Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation.
|
pubmed:affiliation |
Structural and Computational Biology Programme, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|