rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
22
|
pubmed:dateCreated |
1993-1-8
|
pubmed:abstractText |
We compared cleavage efficiencies of mono-molecular and bipartite model RNAs as substrates for RNase P RNAs (M1 RNAs) and holoenzymes from E. coli and Thermus thermophilus, an extreme thermophilic eubacterium. Acceptor stem and T arm of pre-tRNA substrates are essential recognition elements for both enzymes. Impairing coaxial stacking of acceptor and T stems and omitting the T loop led to reduced cleavage efficiencies. Small model substrates were less efficiently cleaved by M1 RNA and RNase P from T. thermophilus than by the corresponding E. coli activities. Competition kinetics and gel retardation studies showed that truncated tRNA substrates are less tightly bound by RNase P and M1 RNA from both bacteria. Our data further indicate that (pre-)tRNA interacts stronger with E. coli than T. thermophilus M1 RNA. Thus, low cleavage efficiencies of truncated model substrates by T. thermophilus RNase P or M1 RNA could be explained by a critical loss of important contact points between enzyme and substrate. In addition, acceptor stem--T arm substrates, composed of two synthetic RNA fragments, have been designed to mimic internal cleavage of any target RNA molecule available for base pairing.
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1097709,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1370819,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1371348,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1371349,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1373488,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1541273,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1541274,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1650453,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1697102,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1706437,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1719485,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-1901990,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2013580,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2194161,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2236030,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2300191,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2347311,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2443980,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2446263,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2447080,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2459398,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2480641,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-2482430,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-3122322,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-3126827,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-3276688,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-3283703,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-4984428,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-6197186,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-6345791,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-6802833,
http://linkedlifedata.com/resource/pubmed/commentcorrection/1281315-790568
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
http://linkedlifedata.com/resource/pubmed/chemical/DNA, Bacterial,
http://linkedlifedata.com/resource/pubmed/chemical/Endoribonucleases,
http://linkedlifedata.com/resource/pubmed/chemical/Escherichia coli Proteins,
http://linkedlifedata.com/resource/pubmed/chemical/RNA, Bacterial,
http://linkedlifedata.com/resource/pubmed/chemical/RNA, Catalytic,
http://linkedlifedata.com/resource/pubmed/chemical/RNA, Transfer, Gly,
http://linkedlifedata.com/resource/pubmed/chemical/Ribonuclease P,
http://linkedlifedata.com/resource/pubmed/chemical/ribonuclease P, E coli
|
pubmed:status |
MEDLINE
|
pubmed:month |
Nov
|
pubmed:issn |
0305-1048
|
pubmed:author |
|
pubmed:issnType |
Print
|
pubmed:day |
25
|
pubmed:volume |
20
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
5963-70
|
pubmed:dateRevised |
2010-9-7
|
pubmed:meshHeading |
pubmed-meshheading:1281315-Base Sequence,
pubmed-meshheading:1281315-DNA, Bacterial,
pubmed-meshheading:1281315-Endoribonucleases,
pubmed-meshheading:1281315-Escherichia coli,
pubmed-meshheading:1281315-Escherichia coli Proteins,
pubmed-meshheading:1281315-Kinetics,
pubmed-meshheading:1281315-Molecular Sequence Data,
pubmed-meshheading:1281315-Nucleic Acid Conformation,
pubmed-meshheading:1281315-RNA, Bacterial,
pubmed-meshheading:1281315-RNA, Catalytic,
pubmed-meshheading:1281315-RNA, Transfer, Gly,
pubmed-meshheading:1281315-Ribonuclease P,
pubmed-meshheading:1281315-Substrate Specificity,
pubmed-meshheading:1281315-Thermus thermophilus,
pubmed-meshheading:1281315-Transcription, Genetic
|
pubmed:year |
1992
|
pubmed:articleTitle |
Cleavage efficiencies of model substrates for ribonuclease P from Escherichia coli and Thermus thermophilus.
|
pubmed:affiliation |
Institut für Biochemie, Freie Universität Berlin, Germany.
|
pubmed:publicationType |
Journal Article,
Research Support, Non-U.S. Gov't
|