Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
6
pubmed:dateCreated
2003-6-3
pubmed:abstractText
Excitotoxic cell death is the fundamental process responsible for many human neurodegenerative disorders, yet the basic mechanisms involved are not fully understood. Here, we exploited the fact that the immature brain is remarkably resistant to seizure-induced excitotoxic cell death and examined the underlying protective mechanisms. We found that, unlike in the adult, seizures do not increase the formation of reactive oxygen species or result in mitochondrial dysfunction in neonatal brain, because of high levels of the mitochondrial uncoupling protein (UCP2). UCP2 expression and function were basally increased in neonatal brain by the fat-rich diet of maternal milk, and substituting a low-fat diet reduced UCP2, restored mitochondrial coupling, and permitted seizure-induced neuronal injury. Thus, modulation of UCP2 expression and function by dietary fat protects neonatal neurons from excitotoxicity by preventing mitochondrial dysfunction. This mechanism offers novel neuroprotective strategies for individuals, greater than 1% of the world's population, who are affected by seizures.
pubmed:grant
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
http://linkedlifedata.com/resource/pubmed/chemical/Antibodies, http://linkedlifedata.com/resource/pubmed/chemical/Carrier Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Ion Channels, http://linkedlifedata.com/resource/pubmed/chemical/Kainic Acid, http://linkedlifedata.com/resource/pubmed/chemical/Membrane Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Membrane Transport Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Mitochondrial Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Neurotoxins, http://linkedlifedata.com/resource/pubmed/chemical/Proteins, http://linkedlifedata.com/resource/pubmed/chemical/Reactive Oxygen Species, http://linkedlifedata.com/resource/pubmed/chemical/mitochondrial uncoupling protein, http://linkedlifedata.com/resource/pubmed/chemical/mitochondrial uncoupling protein 2
pubmed:status
MEDLINE
pubmed:month
Jun
pubmed:issn
0364-5134
pubmed:author
pubmed:issnType
Print
pubmed:volume
53
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
711-7
pubmed:dateRevised
2010-9-8
pubmed:meshHeading
pubmed-meshheading:12783416-Age Factors, pubmed-meshheading:12783416-Animals, pubmed-meshheading:12783416-Animals, Newborn, pubmed-meshheading:12783416-Antibodies, pubmed-meshheading:12783416-Carrier Proteins, pubmed-meshheading:12783416-Cell Death, pubmed-meshheading:12783416-Hippocampus, pubmed-meshheading:12783416-Immunohistochemistry, pubmed-meshheading:12783416-Ion Channels, pubmed-meshheading:12783416-Kainic Acid, pubmed-meshheading:12783416-Limbic System, pubmed-meshheading:12783416-Membrane Proteins, pubmed-meshheading:12783416-Membrane Transport Proteins, pubmed-meshheading:12783416-Mitochondrial Proteins, pubmed-meshheading:12783416-Neurons, pubmed-meshheading:12783416-Neurotoxins, pubmed-meshheading:12783416-Proteins, pubmed-meshheading:12783416-Rats, pubmed-meshheading:12783416-Rats, Sprague-Dawley, pubmed-meshheading:12783416-Reactive Oxygen Species, pubmed-meshheading:12783416-Seizures
pubmed:year
2003
pubmed:articleTitle
Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death.
pubmed:affiliation
Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA 92697-4475, USA.
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, P.H.S., Research Support, Non-U.S. Gov't