Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
12
pubmed:dateCreated
2002-12-6
pubmed:databankReference
pubmed:abstractText
The heat shock response (HSR) is an evolutionarily conserved molecular/biochemical reaction to thermal stress that is essential to the survival of eukaryotic organisms. Recessive Mutator transposon mutations at the maize empty pericarp2 (emp2) locus led to dramatically increased expression of heat shock genes, retarded embryo development, and early-stage abortion of embryogenesis. The developmental timing of emp2 mutant embryo lethality was correlated with the initial competence of maize kernels to invoke the HSR. Cloning and sequence analyses revealed that the emp2 gene encoded a predicted protein with high similarity to HEAT SHOCK BINDING PROTEIN1, which was first described in animals as a negative regulator of the HSR. emp2 is a loss-of-function mutation of an HSR-negative regulator in plants. Despite the recessive emp2 phenotype, steady state levels of emp2 transcripts were abundant in mutant kernels, and the predicted coding region was unaffected. These expression data suggest that emp2 transcription is feedback regulated, whereas S1 nuclease mapping suggests that emp2 mutant transcripts are 5' truncated and nontranslatable. In support of this model, immunoblot assays revealed that EMP2 protein did not accumulate in mutant kernels. These data support a model whereby an unattenuated HSR results in the early abortion of emp2 mutant embryos. Furthermore, the developmental retardation of emp2 mutant kernels before the HSR suggests an additional role for EMP2 during embryo development distinct from the HSR.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-10592191, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-10605935, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-10760238, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-10870963, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-11231577, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-11277913, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-11599559, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-11679589, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-11861572, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-11935018, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-11943192, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-1356050, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-1627779, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-1644286, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-1694578, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-1899357, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-2133647, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-6089104, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-7696880, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-7773016, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-8138165, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-8139564, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-8355691, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-8689565, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-8980516, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-9649501, http://linkedlifedata.com/resource/pubmed/commentcorrection/12468731-9869631
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Dec
pubmed:issn
1040-4651
pubmed:author
pubmed:issnType
Print
pubmed:volume
14
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
3119-32
pubmed:dateRevised
2010-9-14
pubmed:meshHeading
pubmed-meshheading:12468731-5' Untranslated Regions, pubmed-meshheading:12468731-Acclimatization, pubmed-meshheading:12468731-Amino Acid Sequence, pubmed-meshheading:12468731-Base Sequence, pubmed-meshheading:12468731-Chromosome Mapping, pubmed-meshheading:12468731-Cloning, Molecular, pubmed-meshheading:12468731-DNA Transposable Elements, pubmed-meshheading:12468731-Gene Expression Regulation, Developmental, pubmed-meshheading:12468731-Gene Expression Regulation, Plant, pubmed-meshheading:12468731-Genes, Plant, pubmed-meshheading:12468731-Heat-Shock Proteins, pubmed-meshheading:12468731-Heat-Shock Response, pubmed-meshheading:12468731-Hot Temperature, pubmed-meshheading:12468731-Molecular Sequence Data, pubmed-meshheading:12468731-Mutation, pubmed-meshheading:12468731-Plant Proteins, pubmed-meshheading:12468731-Seeds, pubmed-meshheading:12468731-Sequence Homology, Amino Acid, pubmed-meshheading:12468731-Zea mays
pubmed:year
2002
pubmed:articleTitle
Empty pericarp2 encodes a negative regulator of the heat shock response and is required for maize embryogenesis.
pubmed:affiliation
Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA.
pubmed:publicationType
Journal Article