Source:http://linkedlifedata.com/resource/pubmed/id/12241257
Switch to
Predicate | Object |
---|---|
rdf:type | |
lifeskim:mentions | |
pubmed:issue |
2 Pt 2
|
pubmed:dateCreated |
2002-9-20
|
pubmed:abstractText |
We investigate the depinning transition for driven interfaces in the random-field Ising model for various dimensions. We consider the order parameter as a function of the control parameter (driving field) and examine the effect of thermal fluctuations. Although thermal fluctuations drive the system away from criticality, the order parameter obeys a certain scaling law for sufficiently low temperatures and the corresponding exponents are determined. Our results suggest that the so-called upper critical dimension of the depinning transition is five and that the systems belongs to the universality class of the quenched Edward-Wilkinson equation.
|
pubmed:commentsCorrections | |
pubmed:language |
eng
|
pubmed:journal | |
pubmed:status |
PubMed-not-MEDLINE
|
pubmed:month |
Aug
|
pubmed:issn |
1539-3755
|
pubmed:author | |
pubmed:issnType |
Print
|
pubmed:volume |
66
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
026127
|
pubmed:dateRevised |
2003-11-3
|
pubmed:year |
2002
|
pubmed:articleTitle |
Depinning transition of a driven interface in the random-field Ising model around the upper critical dimension.
|
pubmed:affiliation |
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität, Lotharstrasse 1, 47048 Duisburg, Germany. lars@thp.uni.duisburg.de
|
pubmed:publicationType |
Journal Article
|