rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
6
|
pubmed:dateCreated |
2002-6-11
|
pubmed:abstractText |
Macrophage-derived foam cells in developing atherosclerotic lesions may potentially originate either from recruitment of circulating monocytes or from migration of resident tissue macrophages. In this study, we have determined the source of intimal macrophages in the apoE-knockout mouse flow-cessation/hypercholesterolemia model of atherosclerosis using a bone marrow transplantation approach. We also examined the time course and spatial distribution of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression to assess whether endothelial adhesion molecules were involved in recruitment of either circulating monocytes or resident macrophages. We used allelic variants of the mouse common leukocyte antigen (CD45) to distinguish host-derived and donor-derived white blood cells (WBCs) both in blood and in macrophage-rich carotid lesions. We found that the distribution of CD45 isoforms in lesions is similar to that of circulating WBCs, whereas the host-type CD45 isoform is more prevalent in resident adventitial macrophages. These data indicate that macrophage-derived foam cells in the lesion derive mainly from circulating precursors rather than from resident macrophages. The corresponding time course of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression suggests that recruitment of circulating WBCs by endothelial adhesion molecules is likely to be more important during lesion initiation than during the later phase of rapid lesion growth.
|
pubmed:grant |
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-10364560,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-10404048,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-10417402,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-10727439,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-10938020,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-11073837,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-11104745,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-11375415,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-1584779,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-1683798,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-1834169,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-2845400,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-3813980,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-6650664,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-7234961,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-7504883,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-7526875,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-7535821,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-7635947,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-7688768,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-8274468,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-8831498,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-9114045,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-9351395,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-9379054,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-9443434,
http://linkedlifedata.com/resource/pubmed/commentcorrection/12057918-9892595
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
AIM
|
pubmed:chemical |
|
pubmed:status |
MEDLINE
|
pubmed:month |
Jun
|
pubmed:issn |
0002-9440
|
pubmed:author |
|
pubmed:issnType |
Print
|
pubmed:volume |
160
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
2145-55
|
pubmed:dateRevised |
2009-11-18
|
pubmed:meshHeading |
pubmed-meshheading:12057918-Animals,
pubmed-meshheading:12057918-Antigens, CD31,
pubmed-meshheading:12057918-Antigens, CD45,
pubmed-meshheading:12057918-Apolipoproteins E,
pubmed-meshheading:12057918-Arteriosclerosis,
pubmed-meshheading:12057918-Bone Marrow Transplantation,
pubmed-meshheading:12057918-Carotid Arteries,
pubmed-meshheading:12057918-Disease Models, Animal,
pubmed-meshheading:12057918-Female,
pubmed-meshheading:12057918-Flow Cytometry,
pubmed-meshheading:12057918-Foam Cells,
pubmed-meshheading:12057918-Gene Frequency,
pubmed-meshheading:12057918-Genotype,
pubmed-meshheading:12057918-Humans,
pubmed-meshheading:12057918-Intercellular Adhesion Molecule-1,
pubmed-meshheading:12057918-Male,
pubmed-meshheading:12057918-Mice,
pubmed-meshheading:12057918-Mice, Inbred C57BL,
pubmed-meshheading:12057918-Mice, Knockout,
pubmed-meshheading:12057918-Monocytes,
pubmed-meshheading:12057918-P-Selectin,
pubmed-meshheading:12057918-Time Factors,
pubmed-meshheading:12057918-Vascular Cell Adhesion Molecule-1
|
pubmed:year |
2002
|
pubmed:articleTitle |
Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model.
|
pubmed:affiliation |
Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, P.H.S.,
Research Support, Non-U.S. Gov't
|