rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
5
|
pubmed:dateCreated |
2002-1-4
|
pubmed:abstractText |
This paper investigates a version of recurrent neural network with the backpropagation through time (BPTT) algorithm for predicting liver transplant graft failure based on a time series sequence of clinical observations. The objective is to improve upon the current approaches to liver transplant outcome prediction by developing a more complete model that takes into account not only the preoperative risk assessment, but also the early postoperative history.
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:status |
MEDLINE
|
pubmed:issn |
0026-1270
|
pubmed:author |
|
pubmed:issnType |
Print
|
pubmed:volume |
40
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
386-91
|
pubmed:dateRevised |
2004-11-17
|
pubmed:meshHeading |
pubmed-meshheading:11776736-Adult,
pubmed-meshheading:11776736-Algorithms,
pubmed-meshheading:11776736-Decision Support Systems, Clinical,
pubmed-meshheading:11776736-Female,
pubmed-meshheading:11776736-Graft Survival,
pubmed-meshheading:11776736-Humans,
pubmed-meshheading:11776736-Liver Transplantation,
pubmed-meshheading:11776736-Male,
pubmed-meshheading:11776736-Monte Carlo Method,
pubmed-meshheading:11776736-Neural Networks (Computer),
pubmed-meshheading:11776736-Nonlinear Dynamics,
pubmed-meshheading:11776736-Pennsylvania,
pubmed-meshheading:11776736-Postoperative Complications,
pubmed-meshheading:11776736-Sensitivity and Specificity,
pubmed-meshheading:11776736-Treatment Failure,
pubmed-meshheading:11776736-Treatment Outcome
|
pubmed:year |
2001
|
pubmed:articleTitle |
Recurrent neural networks for predicting outcomes after liver transplantation: representing temporal sequence of clinical observations.
|
pubmed:affiliation |
Department of Health Information Management & Center for Biomedical Informatics, University of Pittsburgh, USA. parmanto+@pitt.edu
|
pubmed:publicationType |
Journal Article
|