Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
15
pubmed:dateCreated
2001-7-23
pubmed:abstractText
Early organization of the vertebrate brainstem is characterized by cellular segmentation into compartments, the rhombomeres, which follow a metameric pattern of neuronal development. Expression of the homeobox genes of the Hox family precedes rhombomere formation, and analysis of mouse Hox mutations revealed that they play an important role in the establishment of rhombomere-specific neuronal patterns. However, segmentation is a transient feature, and a dramatic reconfiguration of neurons and synapses takes place during fetal and postnatal stages. Thus, it is not clear whether the early rhombomeric pattern of Hox expression has any influence on the establishment of the neuronal circuitry of the mature brainstem. The Hoxa1 gene is the earliest Hox gene expressed in the developing hindbrain. Moreover, it is rapidly downregulated. Previous analysis of mouse Hoxa1(-/-) mutants has focused on early alterations of hindbrain segmentation and patterning. Here, we show that ectopic neuronal groups in the hindbrain of Hoxa1(-/-) mice establish a supernumerary neuronal circuit that escapes apoptosis and becomes functional postnatally. This system develops from mutant rhombomere 3 (r3)-r4 levels, includes an ectopic group of progenitors with r2 identity, and integrates the rhythm-generating network controlling respiration at birth. This is the first demonstration that changes in Hox expression patterns allow the selection of novel neuronal circuits regulating vital adaptive behaviors. The implications for the evolution of brainstem neural networks are discussed.
pubmed:grant
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Aug
pubmed:issn
1529-2401
pubmed:author
pubmed:issnType
Electronic
pubmed:day
1
pubmed:volume
21
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
5637-42
pubmed:dateRevised
2007-11-14
pubmed:meshHeading
pubmed-meshheading:11466434-Animals, pubmed-meshheading:11466434-Apoptosis, pubmed-meshheading:11466434-Biological Clocks, pubmed-meshheading:11466434-Brain Stem, pubmed-meshheading:11466434-Cell Movement, pubmed-meshheading:11466434-Crosses, Genetic, pubmed-meshheading:11466434-Embryonic Structures, pubmed-meshheading:11466434-Excitatory Amino Acid Agonists, pubmed-meshheading:11466434-Homeodomain Proteins, pubmed-meshheading:11466434-Mice, pubmed-meshheading:11466434-Mice, Knockout, pubmed-meshheading:11466434-Mice, Mutant Strains, pubmed-meshheading:11466434-Mice, Transgenic, pubmed-meshheading:11466434-Morphogenesis, pubmed-meshheading:11466434-Nerve Net, pubmed-meshheading:11466434-Neurons, pubmed-meshheading:11466434-Periodicity, pubmed-meshheading:11466434-Phenotype, pubmed-meshheading:11466434-Pons, pubmed-meshheading:11466434-Respiratory Center, pubmed-meshheading:11466434-Reticular Formation, pubmed-meshheading:11466434-Rhombencephalon, pubmed-meshheading:11466434-Transcription Factors, pubmed-meshheading:11466434-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
pubmed:year
2001
pubmed:articleTitle
Generation of a novel functional neuronal circuit in Hoxa1 mutant mice.
pubmed:affiliation
Neurobiologie Génétique et Intégrative, Unité Propre de Recherche 2216, Centre National de la Recherche Scientifique (CNRS), 91198 Gif-sur-Yvette, France.
pubmed:publicationType
Journal Article, In Vitro, Research Support, U.S. Gov't, P.H.S., Research Support, Non-U.S. Gov't