rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
Pt 1
|
pubmed:dateCreated |
2001-1-26
|
pubmed:abstractText |
Cells maintain a negative resting membrane potential through the constitutive activity of background K+ channels. A novel multigene family of such K+ channels has recently been identified. A unique characteristic of these K+ channels is the presence of two homologous, subunit-like domains, each containing a pore-forming region. Sequence co-variations in the GYGD signature motifs of the two pore regions suggested an interaction between neighbouring pore domains. Mutations of the GYGD motif in the rat drk1 (Kv2.1) K+ channel showed that the tyrosine (Y) position was important for K+ selectivity and single channel conductance, whereas the aspartate (D) position was a critical determinant of open state stability. Tandem constructs engineered to mimic the GYGx-GxGD pattern seen in two-domain K+ channels delineated a co-operative intersubunit interaction between the Y and D positions, which determined ion selectivity, conductance and gating. In the bacterial KcsA K+ channel crystal structure, the equivalent aspartate residue (D80) does not directly interact with permeating K+ ions. However, the data presented here show that the D position is able to fine-tune ion selectivity through a functional interaction with the Y position in the neighbouring subunit. These data indicate a physiological basis for the extensive sequence variation seen in the GYGD motifs of two-domain K+ channels. It is suggested that a cell can precisely regulate its resting membrane potential by selectively expressing a complement of two-domain K+ channels.
|
pubmed:grant |
|
pubmed:commentsCorrections |
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-10367883,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-10390363,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-1279807,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-1899917,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-2000494,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-2000495,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-2206531,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-2340178,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-2388258,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-2770868,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-4700900,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-6259331,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-6309555,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-68708,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-7512171,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-7546728,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-7761417,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-8038378,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-8605869,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-8658170,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-8785286,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-8789947,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-8917578,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-8938713,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-8994597,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9003761,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9017198,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9037094,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9080186,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9312005,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9462864,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9506712,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9525859,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9579518,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9628484,
http://linkedlifedata.com/resource/pubmed/commentcorrection/11136855-9851919
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
|
pubmed:status |
MEDLINE
|
pubmed:month |
Jan
|
pubmed:issn |
0022-3751
|
pubmed:author |
|
pubmed:issnType |
Print
|
pubmed:day |
1
|
pubmed:volume |
530
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
21-33
|
pubmed:dateRevised |
2009-11-18
|
pubmed:meshHeading |
pubmed-meshheading:11136855-Amino Acid Motifs,
pubmed-meshheading:11136855-Amino Acid Sequence,
pubmed-meshheading:11136855-Animals,
pubmed-meshheading:11136855-Cell Membrane Permeability,
pubmed-meshheading:11136855-Delayed Rectifier Potassium Channels,
pubmed-meshheading:11136855-Genetic Engineering,
pubmed-meshheading:11136855-Ion Channel Gating,
pubmed-meshheading:11136855-Membrane Potentials,
pubmed-meshheading:11136855-Molecular Sequence Data,
pubmed-meshheading:11136855-Oligopeptides,
pubmed-meshheading:11136855-Potassium Channels,
pubmed-meshheading:11136855-Potassium Channels, Voltage-Gated,
pubmed-meshheading:11136855-RNA,
pubmed-meshheading:11136855-Rats,
pubmed-meshheading:11136855-Reverse Transcriptase Polymerase Chain Reaction,
pubmed-meshheading:11136855-Shab Potassium Channels,
pubmed-meshheading:11136855-Tyrosine
|
pubmed:year |
2001
|
pubmed:articleTitle |
GYGD pore motifs in neighbouring potassium channel subunits interact to determine ion selectivity.
|
pubmed:affiliation |
Department of Pharmacology and Cancer Biology, Duke University Medical Center, PO Box 3813, Durham, NC 27708, USA.
|
pubmed:publicationType |
Journal Article,
Research Support, U.S. Gov't, P.H.S.
|