pubmed-article:11093405 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:11093405 | lifeskim:mentions | umls-concept:C0007452 | lld:lifeskim |
pubmed-article:11093405 | lifeskim:mentions | umls-concept:C0026336 | lld:lifeskim |
pubmed-article:11093405 | lifeskim:mentions | umls-concept:C0018826 | lld:lifeskim |
pubmed-article:11093405 | lifeskim:mentions | umls-concept:C1522564 | lld:lifeskim |
pubmed-article:11093405 | lifeskim:mentions | umls-concept:C1280500 | lld:lifeskim |
pubmed-article:11093405 | lifeskim:mentions | umls-concept:C0033268 | lld:lifeskim |
pubmed-article:11093405 | lifeskim:mentions | umls-concept:C0018829 | lld:lifeskim |
pubmed-article:11093405 | pubmed:issue | 3 | lld:pubmed |
pubmed-article:11093405 | pubmed:dateCreated | 2001-2-12 | lld:pubmed |
pubmed-article:11093405 | pubmed:abstractText | Microemboli caused by mechanical heart valves have the potential to cause cerebrovascular events. We investigated the effects of myocardial contractility and heart rate on microemboli production in association with conventional and experimental mechanical heart valves implanted in the mitral position in a bovine model. In 10 calves, the mitral valves were replaced with mechanical valves. Doppler recordings were analyzed for high-intensity transient signals, which are ultrasound reflections from circulating microemboli. The animals were studied at rest, during pacing at 160 bpm, after dobutamine infusion, and after esmolol infusion. The incidence of high intensity transient signals was expressed as signal frequency (signals per hour) and as signal rate (signals per 100 heart cycles). With a 68% increase in the heart rate, signal frequency increased by 135%, but signal rate increased by only 41 %. With a 144% increase in myocardial contractility, signal rate increased by 264 %. With a 31 % decrease in contractility, signal rate decreased by 62 %. We conclude that microemboli production by mechanical heart valves varies with myocardial contractility and heart rate. The fact that contractility affects the incidence of high-intensity transient signals suggests that the microemboli are gaseous in nature, that their production is pressure driven, and that cavitation is a possible cause. It is likely that mechanical heart valve design is responsible for the quantity of microemboli production. | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:language | eng | lld:pubmed |
pubmed-article:11093405 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:11093405 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:11093405 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:11093405 | pubmed:issn | 0730-2347 | lld:pubmed |
pubmed-article:11093405 | pubmed:author | pubmed-author:FrazierO HOH | lld:pubmed |
pubmed-article:11093405 | pubmed:author | pubmed-author:RoseHH | lld:pubmed |
pubmed-article:11093405 | pubmed:author | pubmed-author:LecroartJ LJL | lld:pubmed |
pubmed-article:11093405 | pubmed:author | pubmed-author:LapeyreDD | lld:pubmed |
pubmed-article:11093405 | pubmed:author | pubmed-author:DeklunderGG | lld:pubmed |
pubmed-article:11093405 | pubmed:author | pubmed-author:CongerJ LJL | lld:pubmed |
pubmed-article:11093405 | pubmed:author | pubmed-author:GregoricII | lld:pubmed |
pubmed-article:11093405 | pubmed:author | pubmed-author:TamezDD | lld:pubmed |
pubmed-article:11093405 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:11093405 | pubmed:volume | 27 | lld:pubmed |
pubmed-article:11093405 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:11093405 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:11093405 | pubmed:pagination | 236-9 | lld:pubmed |
pubmed-article:11093405 | pubmed:dateRevised | 2009-11-18 | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:meshHeading | pubmed-meshheading:11093405... | lld:pubmed |
pubmed-article:11093405 | pubmed:year | 2000 | lld:pubmed |
pubmed-article:11093405 | pubmed:articleTitle | Effects of myocardial contractility on microemboli production by mechanical heart valves in a bovine model. | lld:pubmed |
pubmed-article:11093405 | pubmed:affiliation | Hôpital Cardiologique, University Hospital, Lille, France. | lld:pubmed |
pubmed-article:11093405 | pubmed:publicationType | Journal Article | lld:pubmed |