Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
3
pubmed:dateCreated
2000-10-24
pubmed:abstractText
We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2-M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the alpha subunit (alphaS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydrophilic mutations (Asp, Lys, and Gln) are without effect. Because the gating kinetics of the alphaS269I receptor (a congenital myasthenic syndrome mutant) in the presence of ACh are too fast, choline was used as the agonist. This revealed an approximately 92-fold increased gating equilibrium constant, which is consistent with an approximately 10-fold decreased EC(50) in the presence of ACh. With choline, this mutation accelerates channel opening approximately 28-fold, slows channel closing approximately 3-fold, but does not affect agonist binding to the closed state. These ratios suggest that, with ACh, alphaS269I acetylcholine receptors open at a rate of approximately 1.4 x 10(6) s(-1) and close at a rate of approximately 760 s(-1). These gating rate constants, together with the measured duration of apparent openings at low ACh concentrations, further suggest that ACh dissociates from the diliganded open receptor at a rate of approximately 140 s(-1). Ile mutations at positions flanking alphaS269 impair, rather than enhance, channel gating. Inserting or deleting one residue from this linker in the alpha subunit increased and decreased, respectively, the apparent open time approximately twofold. Contrary to the alphaS269I mutation, Ile mutations at equivalent positions of the beta, straightepsilon, and delta subunits do not affect apparent open-channel lifetimes. However, in beta and straightepsilon, shifting the mutation one residue to the NH(2)-terminal end enhances channel gating. The overall results indicate that this linker is a control element whose hydrophobicity determines channel gating in a position- and subunit-dependent manner. Characterization of the transition state of the gating reaction suggests that during channel opening the M2-M3L of the alpha subunit moves before the corresponding linkers of the beta and straightepsilon subunits.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-10087333, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-10230802, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-10468632, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-10611302, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-10693806, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-10779319, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-10779320, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-13431862, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-1383829, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-14343300, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-1597678, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-1629905, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-2034685, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-2369519, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-2419552, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-2447968, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-2457702, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-2459620, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-4537943, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-6248795, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-7490748, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-7531341, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-7539991, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-7565616, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-7637783, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-7754520, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-7919166, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-8415719, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-8650229, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-8744302, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-8755487, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-8770203, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-8845149, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-8876184, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-8983160, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-9158151, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-9222901, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-9311780, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-9490812, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-9526011, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-9649381, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-9689026, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-9738939, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-9799641, http://linkedlifedata.com/resource/pubmed/commentcorrection/10962011-9950429
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Sep
pubmed:issn
0022-1295
pubmed:author
pubmed:issnType
Print
pubmed:volume
116
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
327-40
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed-meshheading:10962011-Amino Acid Sequence, pubmed-meshheading:10962011-Animals, pubmed-meshheading:10962011-Binding Sites, pubmed-meshheading:10962011-Cell Line, pubmed-meshheading:10962011-Humans, pubmed-meshheading:10962011-Ion Channel Gating, pubmed-meshheading:10962011-Ion Channels, pubmed-meshheading:10962011-Kinetics, pubmed-meshheading:10962011-Mice, pubmed-meshheading:10962011-Muscles, pubmed-meshheading:10962011-Mutagenesis, Site-Directed, pubmed-meshheading:10962011-Mutation, pubmed-meshheading:10962011-Myasthenic Syndromes, Congenital, pubmed-meshheading:10962011-Protein Structure, Quaternary, pubmed-meshheading:10962011-Protein Structure, Tertiary, pubmed-meshheading:10962011-Receptors, Cholinergic, pubmed-meshheading:10962011-Recombinant Proteins, pubmed-meshheading:10962011-Sequence Homology, Amino Acid
pubmed:year
2000
pubmed:articleTitle
The extracellular linker of muscle acetylcholine receptor channels is a gating control element.
pubmed:affiliation
Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA.
pubmed:publicationType
Journal Article, In Vitro, Research Support, U.S. Gov't, P.H.S.
More...