Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:dateCreated
2000-6-23
pubmed:abstractText
Turtle cochlear hair cells are electrically tuned by a voltage-dependent Ca2+ current and a Ca2+-dependent K+ current (IBK(Ca)). The effects of intracellular calcium buffering on electrical tuning were studied in hair cells at apical and basal cochlear locations tuned to 100 and 300 Hz, respectively. Increasing the intracellular BAPTA concentration changed the hair cell's resonant frequency little, but optimized tuning at more depolarized membrane potentials due to a positive shift in the half-activation voltage (V ) of the IBK(Ca). The shift in V depended similarly on BAPTA concentration in basal and apical hair cells despite a 2. 4-fold difference in the size of the Ca2+ current at the two positions. The Ca2+ current amplitude increased exponentially with distance along the cochlea. Comparison of V values and tuning properties using different BAPTA concentrations with values measured in perforated-patch recordings gave the endogenous calcium buffer as equivalent to 0.21 mM BAPTA in low-frequency cells, and 0.46 mM BAPTA in high-frequency cells. High conductance Ca2+-activated K+ (BKCa) channels recorded in inside-out membrane patches were 2-fold less Ca2+ sensitive in high-frequency than in low-frequency cells. Confocal Ca2+ imaging using the fluorescent indicator Calcium Green-1 revealed about twice as many hotspots of Ca2+ entry during depolarization in high-frequency compared to low-frequency hair cells. We suggest that each BKCa channel is gated by Ca2+ entry through a few nearby Ca2+ channels, and that Ca2+ and BKCa channels occupy, at constant channel density, a greater fraction of the membrane area in high-frequency cells than in low-frequency cells.
pubmed:grant
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-10420004, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-1315621, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-1700083, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-2443666, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-2459299, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-3198791, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-7265000, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-7463380, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-7624477, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-7642595, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-7730789, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-7946334, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-8052623, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-8182469, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-8271200, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-8308720, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-8479539, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-8744295, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-8845156, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-8865061, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-8961183, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-9174998, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-9278532, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-9284292, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-9364060, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-9481476, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-9763471, http://linkedlifedata.com/resource/pubmed/commentcorrection/10766923-9870944
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Apr
pubmed:issn
0022-3751
pubmed:author
pubmed:issnType
Print
pubmed:day
15
pubmed:volume
524 Pt 2
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
423-36
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed-meshheading:10766923-Acoustic Stimulation, pubmed-meshheading:10766923-Animals, pubmed-meshheading:10766923-Buffers, pubmed-meshheading:10766923-Calcium, pubmed-meshheading:10766923-Calcium Signaling, pubmed-meshheading:10766923-Chelating Agents, pubmed-meshheading:10766923-Cochlea, pubmed-meshheading:10766923-Egtazic Acid, pubmed-meshheading:10766923-Electrophysiology, pubmed-meshheading:10766923-Hair Cells, Auditory, pubmed-meshheading:10766923-Ion Channel Gating, pubmed-meshheading:10766923-Large-Conductance Calcium-Activated Potassium Channels, pubmed-meshheading:10766923-Microscopy, Confocal, pubmed-meshheading:10766923-Patch-Clamp Techniques, pubmed-meshheading:10766923-Potassium Channels, pubmed-meshheading:10766923-Potassium Channels, Calcium-Activated, pubmed-meshheading:10766923-Turtles
pubmed:year
2000
pubmed:articleTitle
Tonotopic variations of calcium signalling in turtle auditory hair cells.
pubmed:affiliation
Department of Physiology, University of Wisconsin Medical School, Madison, WI 53706, USA. fettiplace@physiology.wisc.edu
pubmed:publicationType
Journal Article, Research Support, U.S. Gov't, P.H.S., Research Support, Non-U.S. Gov't