pubmed-article:10594373 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:10594373 | lifeskim:mentions | umls-concept:C0043393 | lld:lifeskim |
pubmed-article:10594373 | lifeskim:mentions | umls-concept:C0035715 | lld:lifeskim |
pubmed-article:10594373 | lifeskim:mentions | umls-concept:C1450029 | lld:lifeskim |
pubmed-article:10594373 | lifeskim:mentions | umls-concept:C0178499 | lld:lifeskim |
pubmed-article:10594373 | lifeskim:mentions | umls-concept:C0205171 | lld:lifeskim |
pubmed-article:10594373 | lifeskim:mentions | umls-concept:C1706204 | lld:lifeskim |
pubmed-article:10594373 | lifeskim:mentions | umls-concept:C0439828 | lld:lifeskim |
pubmed-article:10594373 | lifeskim:mentions | umls-concept:C1555721 | lld:lifeskim |
pubmed-article:10594373 | pubmed:issue | 2-3 | lld:pubmed |
pubmed-article:10594373 | pubmed:dateCreated | 2000-2-14 | lld:pubmed |
pubmed-article:10594373 | pubmed:abstractText | Early biochemical data showed that aminoacyl-tRNA synthetases often displayed species-specific recognition of tRNA. We compared the ability of purified Saccharomyces cerevisiae and Escherichia coli arginyl-tRNA synthetases to aminoacylate native and transcribed yeast tRNA(Arg) as well as E. coli tRNA(Arg). The kinetic data revealed that yeast ArgRS could charge E. coli tRNA(Arg), but at a lower efficiency than it charged either the transcribed or native yeast tRNA(Arg). E. coli ArgRS can acylate only its cognate E. coli tRNA. Strikingly, a single base change from C to A at position 20 in yeast tRNA(3)(Arg) altered the species specificity. The transcript of yeast tRNA(3)(Arg)CA20 mutant was aminoacylated by E. coli ArgRS with a 10(6) increase in k(cat)/K(m) over that for aminoacylation of yeast tRNA(3)(Arg) transcript. This indicates that A20 is not only an important identity of E. coli tRNA(Arg), but is also the key to altering species-specific aminoacylation of yeast tRNA(Arg). | lld:pubmed |
pubmed-article:10594373 | pubmed:language | eng | lld:pubmed |
pubmed-article:10594373 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10594373 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:10594373 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10594373 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10594373 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:10594373 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:10594373 | pubmed:month | Dec | lld:pubmed |
pubmed-article:10594373 | pubmed:issn | 0006-3002 | lld:pubmed |
pubmed-article:10594373 | pubmed:author | pubmed-author:LiuWW | lld:pubmed |
pubmed-article:10594373 | pubmed:author | pubmed-author:WangYY | lld:pubmed |
pubmed-article:10594373 | pubmed:author | pubmed-author:WangEE | lld:pubmed |
pubmed-article:10594373 | pubmed:author | pubmed-author:GangloffJJ | lld:pubmed |
pubmed-article:10594373 | pubmed:author | pubmed-author:HuangYY | lld:pubmed |
pubmed-article:10594373 | pubmed:author | pubmed-author:ErianiGG | lld:pubmed |
pubmed-article:10594373 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:10594373 | pubmed:day | 27 | lld:pubmed |
pubmed-article:10594373 | pubmed:volume | 1473 | lld:pubmed |
pubmed-article:10594373 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:10594373 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:10594373 | pubmed:pagination | 356-62 | lld:pubmed |
pubmed-article:10594373 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:meshHeading | pubmed-meshheading:10594373... | lld:pubmed |
pubmed-article:10594373 | pubmed:year | 1999 | lld:pubmed |
pubmed-article:10594373 | pubmed:articleTitle | A single base substitution in the variable pocket of yeast tRNA(Arg) eliminates species-specific aminoacylation. | lld:pubmed |
pubmed-article:10594373 | pubmed:affiliation | State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry, Academia Sinica, 320 Yue-yang Road, Shanghai, China. | lld:pubmed |
pubmed-article:10594373 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:10594373 | pubmed:publicationType | Comparative Study | lld:pubmed |
pubmed-article:10594373 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10594373 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10594373 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10594373 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10594373 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:10594373 | lld:pubmed |