rdf:type |
|
lifeskim:mentions |
|
pubmed:issue |
4
|
pubmed:dateCreated |
1999-5-4
|
pubmed:abstractText |
The on-line control of enzyme-production processes is difficult, owing to the uncertainties typical of biological systems and to the lack of suitable on-line sensors for key process variables. For example, intelligent methods to predict the end point of fermentation could be of great economic value. Computer-assisted control based on artificial-neural-network models offers a novel solution in such situations. Well-trained feedforward-backpropagation neural networks can be used as software sensors in enzyme-process control; their performance can be affected by a number of factors.
|
pubmed:language |
eng
|
pubmed:journal |
|
pubmed:citationSubset |
IM
|
pubmed:chemical |
|
pubmed:status |
MEDLINE
|
pubmed:month |
Apr
|
pubmed:issn |
0167-7799
|
pubmed:author |
|
pubmed:issnType |
Print
|
pubmed:volume |
17
|
pubmed:owner |
NLM
|
pubmed:authorsComplete |
Y
|
pubmed:pagination |
155-62
|
pubmed:dateRevised |
2008-11-21
|
pubmed:meshHeading |
pubmed-meshheading:10203774-Algorithms,
pubmed-meshheading:10203774-Biotechnology,
pubmed-meshheading:10203774-Enzymes,
pubmed-meshheading:10203774-Fermentation,
pubmed-meshheading:10203774-Glucan 1,4-alpha-Glucosidase,
pubmed-meshheading:10203774-Lipase,
pubmed-meshheading:10203774-Neural Networks (Computer),
pubmed-meshheading:10203774-Protein Engineering,
pubmed-meshheading:10203774-Recombinant Proteins,
pubmed-meshheading:10203774-Software,
pubmed-meshheading:10203774-Xylan Endo-1,3-beta-Xylosidase,
pubmed-meshheading:10203774-Xylosidases,
pubmed-meshheading:10203774-alpha-Amylases,
pubmed-meshheading:10203774-beta-Galactosidase
|
pubmed:year |
1999
|
pubmed:articleTitle |
Applying neural networks as software sensors for enzyme engineering.
|
pubmed:affiliation |
Laboratory of Bioprocess Engineering, Helsinki University of Technology, PO Box 6100, FIN-02015 HUT, Finland.
|
pubmed:publicationType |
Journal Article,
Review,
Research Support, Non-U.S. Gov't
|