Statements in which the resource exists as a subject.
PredicateObject
rdf:type
lifeskim:mentions
pubmed:issue
3
pubmed:dateCreated
1999-4-5
pubmed:abstractText
Fast exocytosis in melanotropic cells, activated by calcium entry through voltage-gated calcium channels, is very sensitive to mobile calcium buffers (complete block at 800 microM ethylene glycol bis(beta-aminoethyl ether)-N,N,N'N'-tetraacetic acid (EGTA)). This indicates that calcium diffuses a substantial distance from the channel to the vesicle. Surprisingly, 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), having a similar KD for calcium as EGTA but a approximately 100 times faster binding rate, blocked exocytosis only twice as effectively as EGTA. Using computer simulations, we demonstrate that this result cannot be explained by free diffusion and buffer binding rates. We hypothesized that local saturation of calcium buffers is involved. A diffusion barrier for both calcium and buffer molecules, located 50-300 nm from the membrane and reducing diffusion 1000 to 10,000 times, generated similar calcium concentrations for specific concentrations of EGTA and BAPTA. With such barriers, calcium rise phase kinetics upon short step depolarizations (2-20 ms) were faster for EGTA than for BAPTA, implying that short depolarizations should allow exocytosis with 50 microM EGTA but not with 25 microM BAPTA. This prediction was confirmed experimentally with capacitance measurements. Coupling exocytosis to calcium dynamics in the model, we found that a barrier with a approximately 3000 times reduced diffusion at approximately 130 nm beneath the membrane best explains the experimentally observed effects of EGTA and BAPTA on block and kinetics of release.
pubmed:commentsCorrections
http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-1350109, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-1538782, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-1646416, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-1675264, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-2157158, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-2223095, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-2317553, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-2412607, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-2611329, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-2714879, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-3395658, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-6442108, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-6770893, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-7576652, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-7696493, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-7718232, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-7751918, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-7809118, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-7906397, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-7946349, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-7993624, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8119979, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8182469, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8201424, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8274272, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8393324, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8427700, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8428588, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8431551, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8479539, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8524397, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8551339, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8789951, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8837774, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8891612, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-8982154, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-9017195, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-9278532, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-9284292, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-9292969, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-9412488, http://linkedlifedata.com/resource/pubmed/commentcorrection/10049349-9539117
pubmed:language
eng
pubmed:journal
pubmed:citationSubset
IM
pubmed:chemical
pubmed:status
MEDLINE
pubmed:month
Mar
pubmed:issn
0006-3495
pubmed:author
pubmed:issnType
Print
pubmed:volume
76
pubmed:owner
NLM
pubmed:authorsComplete
Y
pubmed:pagination
1693-705
pubmed:dateRevised
2009-11-18
pubmed:meshHeading
pubmed:year
1999
pubmed:articleTitle
Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense cored vesicles.
pubmed:affiliation
Membrane Physiology Section, Research Institute Neurosciences, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.ksk@bio.vu.nl
pubmed:publicationType
Journal Article, Research Support, Non-U.S. Gov't